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ABSTRACT
This paper proposes a new social network classification method by
comparing statistics of their centralities and clustering coefficients.
Specifically, the proposed method uses the statistics of Degree Cen-
tralities and clustering coefficients of networks as a classification
criterion. A theoretical justification to this method is also given.
In relation to the widely held belief that a social network graph is
solely defined by its degree distribution, the novelty of this paper
consists in revealing the strong dependence of social networks on
Degree Centralities and clustering coefficients, and in using them as
minimal information to classify social networks. In addition, exper-
imental classification demonstrates a very good performance of the
proposed method on real social network data, and validates the hy-
pothesis that Degree Centralities and clustering coefficients are the
only two viable independent properties of a social network.

Index Terms— Social Network, Network Classification, Pattern
Recognition

1. INTRODUCTION

Social networks have been of research interest for a long time. The
previous research has mainly focused on individuals and the rela-
tionships in a given network[1][2][3][4]. Few works have, however,
studied the relationships between different networks.

To date, different properties of networks have been measured
and studied. The main ones includes: Degree Centrality, Between-
ness Centrality, Closeness Centrality, Eigenvector Centrality and
Clustering Coefficients. Each of them is a measure of importance
of a node within a network. It was discovered that: their distribu-
tions are not arbitrary but rather obey certain laws. For instance,
a degree sequence in a social network always follows power law
distribution[3]. But the statistical difference between the distribu-
tions of centralities and clustering coefficients has yet to be paid
close attention to.

In fact, although the degree sequences for most social networks
obey a power law distribution, the statistics, i.e. variance, skew-
ness and kurtosis of the distributions vary for different networks.
Naturally, one would think that the difference between higher order
statistics of the distribution of centralities of different networks is
actually distinguishing characteristics between them. One can hence
conclude that using the statistical moments of the distribution of cen-
tralities and clustering coefficients of the nodes in a network as a
classification criterion is both reasonable and effective, as it only re-
quires partial information of the networks.

Meanwhile, not all of the properties of social networks are
equally important for their classification. Under the assumption
that, in social networks, if two relationships which do not share
a common node, are conditionally independent of each other, one

can show that the Degree Centralities and the number of triads are
the crucial properties to determine its characteristics[5]. Thus, to
classify different types of social networks, we only have to compare
their Degree Centralities and their number of triads. Given that
clustering coefficient is the only property that is closely related to
the number of triads in a network, our proposed method is based on
the Degree centralities and clustering coefficients to classify social
networks.

The classification of different types of networks is of importance
in many applications. In criminal networks, the potential use of this
technique would be to detect whether different criminal networks
belong to a larger network using similar rules to control its mem-
bers. In terrorist networks, this method could, for instance, be used
to detect whether a terrorist network is led by the same leader that
has a history of organizing terrorist plots, and hence help identify the
leader.

In this paper, we first introduce some fundamental characteris-
tics in social networks along with their definitions. The theoretical
analysis about the dependence of social networks on certain proper-
ties is then illustrated. We also experimentally establish the relation-
ship between different centralities of social networks. By combining
the theoretical analysis and the experiment results together, we for-
mulate a hypothesis which states that information included in Degree
Centrality and in clustering coefficients is amply sufficient to fully
characterize a social network. We proceed to test this hypothesis by
constructing a classification model, which we experimentally apply
to real network data for validation. And we finally conclude with
some remarks and future planned work at the end of the paper.

2. BACKGROUND

In all previous studies on social networks[3][1][2][4], different types
of centralities and coefficients were proposed in order to measure
the important characteristics of a network. These include: Degree
Centrality, Betweenness Centrality, Closeness Centrality, Eigenvec-
tor Centrality and clustering coefficients. We have thus far focused
on networks with neutral simple links, i.e. network graph is un-
directed and the edges are un-weighted. The adjacency matrix of a
network is defined as:

Mij =

(
1, if nodes i and j are connected

0, if nodes i and j are not connected
(1)

All the network information is contained in the adjacency matrix M .

The Degree centrality describes how many direct neighbors one
node has in a network. In social networks, especially a scale free
network, the distribution of degree centralities obeys a power law.
The definition of degree centrality of node i in a network is:
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D(i) =
NX

j=1,j �=i

Mij

N − 1
, (2)

where N is the total number of nodes in a network represented as
a planar graph. We also define the degree of node i as: d(i) =PN

j=1,j �=i Mij .
The structure consisting of a node of degree d along with all its

d neighbors is called a d-star.
Betweenness Centrality describes how important a node is when

considering how much information flows through it in a network.
The definition of Betweenness Centrality of node i in a network is:

B(i) =
NX

j=1,j �=k �=i

σjk(i)

σjk
, (3)

where σjk(i) is the number of geodesic paths between node j and
node k that goes through node i, and σjk is the number of geodesic
paths between nodes j and k.

Closeness centrality describes how a node could pass informa-
tion to the other nodes. The definition of Closeness centrality of
node i in a network is:

C(i) =
NX

j=1,j �=i

dij

N − 1
, (4)

where dij is geodesic distance between nodes i and j.
Eigenvector Centrality not only counts the number of links one

node has, but also counts how important is the node it connects to.
The definition of Eigenvector Centrality of node i in a network is:

E(i) =
1

λ

NX
j=1,j �=i

E(i)Mij , (5)

where E(i) is Eigenvector Centrality for node i and λ corresponds
to the largest eigenvalue of the adjacency matrix M . And E(i) can
be solved from the definition above.

A clustering coefficient measures how structured the neighbor-
hood of a node is in a network. The definition of Closeness centrality
of node i in a network is:

CC(i) =
2|{ejk}|

d(i)(d(i) − 1)
, (6)

where set {ejk} contains all the links existing between the neighbors
that node i immediately connects to. For each ejk, where nodes
j and k are neighbors of node i, there is a triad formed by edges
ejk,eik and eij. |{ejk}| thus represents the number of triads that
includes node i.

3. REVIEW OF MARKOV GRAPH[5]

A social network described by its adjacent matrix Mij can be
considered as a sequence of random variables which are the el-
ements of the adjacent matrix. Furthermore, we can also think
of it as a random Markov field which has an underlying depen-
dence structure describing the conditional dependence between
adjacent matrix elements. Such dependence structure is called a
dependence graph D = {nodeD, edgeD} for the social network
M = {nodeM , edgeM}. The nodes in graph D are all pairs of peo-
ple in M : nodeD = {{i, j}i �=j}; thus there are N(N − 1)/2 nodes
for graph D. Suppose there are four nodes in social network M :
i, j, k, l. Then relationship {i, j} and relationship {k, l} correspond

to two nodes in dependence graph D. And these two nodes in D
are linked if and only if relationship {i, j} and relationship {k, l}
conditionally depend on each other.

According to Hammersley-Clifford theorem, the probability of a
general network to show up is:

P (G) = z−1exp[
X
c⊆G

αc], (7)

where z is the partition that normalizes P (G) and αc is a constant
corresponding to a clique c in {D}.

It is reasonable to state that, in social networks, two relationships
which do not share a common node are conditionally independent of
each other. This effectively requires edgeD contain no links between
any two elements {i, j},{k, l} that are disjoint edges in M . In this
case, the cliques in D only correspond to triads and stars in M and
M is called a Markov Graph. In addition, as the social network
is homogeneous, the probability P (G) should be invariant to the
permutation of the indices of the nodes in M . In light of the above
properties, we have:

Theorem 3.1 Any homogeneous undirected Markov graph has
probability:

P (G) = z−1exp[τt +

N−1X
k=1

δksk], (8)

where t is number of triangles in network G and sk is the number of
k-star in network G; τ and δk are arbitrary constant corresponding
to them. For details of the proofs the reader is referred to Frank and
Strauss[5][6].

We can also rewrite this probability as:

P (G) = z−1exp[τt +
NX

i=1

θid(i)], (9)

where d(i) is the degree for node i and thetai is the constant corre-
sponding to it. In light of the earlier definitions of Degree Central-
ities and clustering coefficients, these are the only directly related
characteristics of the network. Accordingly, we readily conclude
that the only two crucial properties to describe a social network are
degree centralities and clustering coefficients.

4. RELATIONS BETWEEN CENTRALITIES AND
CLUSTERING COEFFICIENTS

As degree centralities of nodes in a social network always obey
a power law distribution, we proceed to test how the other cen-
tralities behave when degree centralities are kept unchanged and
obey a power law distribution. By applying the Molloy-Reed (M-
R) algorithm[7][8], we can uniformly sample a graph which obeys a
certain graphical degree sequence, coming from a power law distri-
bution. A sequence of integers {d(i)} is graphical if for 1 ≤ k ≤
N − 1:

kX
i=0

d(i) ≤ k(k + 1) +

NX
i=k+1

min{k, d(i)}, (10)

where Erdös-Gallai theorem[9] guarantees that once a sequence of
integers obeys the above condition, there exists at least one graph
whose degree sequence is exactly the same as the given sequence
of integers. We randomly choose a graphical degree sequence that
obeys power law distribution, as shown in Figure1.
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Fig. 1. A graphical degree sequence obeying power law distribution.

Then according to this degree sequence, we uniformly sample
105 sub-graphs that obey this degree and observe how the other cen-
tralities and clustering coefficients vary when the degree sequence is
kept invariant. The result of the experiment is shown in Figure2.
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Fig. 2. Behavior of Betweenness Centrality, Closeness Centrality,
Eigenvector Centrality and Clustering Coefficients.

We repeat the experiment demonstrated above 102 times. For
each time, we randomly select a degree sequence that obeys a power
law distribution. The relative average standard derivation comparing
to the mean of the centralities and cluster coefficients are shown in
Table 1.

Table 1. STD V.S Mean of Network Properties.

Network Properties STD/Mean

Betweenness Centrality 0.9101

Closeness Centrality 0.4705

Eigenvector Centrality 0.9178

Clustering Coefficients 2.6701

According to these results, we can see that for the same degree
sequence, and for a large number of generated graphs, the variance of
Betweenness Centrality, Closeness Centrality and Eigenvector Cen-
trality between graphs remain small compared to that of clustering
coefficients. This indicates that when the distribution of Degree
Centralities obeys a power law, the other centralities are largely de-
termined. So they cannot provide any more information about the

characteristics of the network than degree centrality itself. However,
clustering coefficients vary widely from graph to graph, indicating
that different information is provided by degree centrality and the
related centralities.

5. HYPOTHESIS AND CLASSIFICATION MODEL

Based on the theoretical analysis in Section 2 and the experimental
results in Section 3, we propose the followings:

Hypothesis 1:
The characteristics of a network are determined by its clustering

coefficient and its degree centrality.

In the course of testing this hypothesis, we build a model that
can be used to classify different types of networks. The model is as
follows:

The characteristics of a network are described by a set of indexed
features:

A1, A2, A3 . . .,

where Ai’s are functions of the set of centralities and clustering co-
efficients of the network:

D, B, C, E, CC.

According to hypothesis 1, {Ai} may be chosen to just be a
function of Degree Centralities and clustering coefficients of a so-
cial network. And due to the fact that social networks are most likely
scale-free, i.e. the degree sequence obeys a power law distribution,
we can just use the statistics of a degree sequence to represent the in-
formation containing in degree centralities of the network. Although
the distribution of clustering coefficients is unknown to us, using its
statistics up to fourth order should also be sufficient to present most
of the statistical information of the clustering coefficients. To that
end, the set {Ai} is chosen to be:
{Ai} = {mean(D), var(D), skewness(D), kurtosis(D),
mean(CC), var(CC), skewness(CC), knotisos(CC)}

By comparing the different sets {Ai} of different social net-
works, we can easily establish the class similarity of different net-
works.

6. NETWORK CLASSIFICATION

The data we use in our experiment is 800 sub-networks sampled
from two giant networks: 1. a snap shot of the Internet at the level
of autonomous systems measured by Mark Newman from data in
July 22, 2006[10]. 2. a weighted network of co-authorships between
scientists posting preprints on High-Energy Theory E-Print Archive
between Jan 1, 1995 and December 31, 1999[10]. When the sub-
networks are sampled from the above two giant networks, all links
between nodes are set to be un-weighted and natural, and the size
of the sub-network is set to be from 50 nodes to 200 nodes. There
are 400 sub-networks for each type of the networks, 60% of which
are treated as a learning data base, and 40% are used to test the
classification model. The mean of vector {Ai} is calculated for the
data base, which is called {Āi}INT for the sub-networks sampled
from internet snap shot and {Āi}HEP for the sub-networks sampled
from the network of co-authorships among the scientists posting on
High-Energy Theory E-Print Archive. Then, the normalized distance
from the {Ai} of the tested sub-network to {Āi}j is calculated as:

NDj =
X

i

|Ai − Āij |
Āij

, (11)
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where j = INT or HEP .

In order to show that the performance is best when {Ai} is the
statistics of Degree Centralities and clustering coefficients, {Ai} is
chosen to be in five cases:

1. Statistics of Degree Centralities and Clustering coefficients.
2. Statistics of Degree Centralities.
3. Statistics of clustering coefficients.
4. Statistics of Betweenness Centralities.
5. Statistics of Closeness Centralities.
6. Statistics of Eigenvector Centralities.
Experimental results of cases 1, 2 and 3 are shown in Figure 3

and experimental results of cases 4, 5 and 6 are shown in Figure 4.
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Fig. 3. Classification result of case 1, 2 and 3. y axis represents
NDHEP , and x axis represents NDINT .
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Fig. 4. Classification result of case 4, 5 and 6. y axis represents
NDHEP , and x axis represents NDINT

From the experimental results, we can see that by using the
statistics of Degree Centralities and clustering coefficients, the per-
formance of classification model is very good. This is in contrast
to only using degree centralities or clustering coefficients, where the

results are difficult to evaluate. In fact, when we use any of Be-
tweenness Centralities, Eigenvector Centralities or Closeness Cen-
tralities along, the performance of the classification model dramati-
cally drops.

7. CONCLUSION AND FUTURE WORK

In this paper, we have theoretically shown, with experimental vali-
dations, that Degree Centralities and clustering coefficients are two
fundamental statistics for classifying social networks. Based on this
hypothesis, we further proposed a social network model which can
classify different types of social networks. Both the hypothesis and
the classification model are supported by experimental results. In the
future work, weighted links and directed network will be considered
in order to improve the performance of the classification. Tempo-
ral change of the centralities and clustering coefficients will also be
added to the model.
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