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Abstract— The solution to the problem of seismic signals segmentation
constitutes a very interesting and challenging task. The main difficulty
in solving this problem is attributed to the fact that both the statistical
properties of seismic noise, as well the characteristics of the recorded
events are in general unknown. In this paper, by exploiting the particular
nature of the signals we are treating, and by using some interesting
properties that obeys a difference based test statistic as well as its
ingredients, we propose an approach that results in a robust and efficient
automatic detection method. From a series of experiments we have
conducted in both synthetic and real seismic data, the effectiveness of
the proposed technique is confirmed.

I. INTRODUCTION

The successful solution of the problem of identification of the
seismic events contained from continuously recorded seismic data
constitutes the basic ingredient in achieving successfully the ultimate
goal of picking, that is the estimation of the arrival times of the
seismic waves to the recording stations. The common approach
followed, in the so called off-line techniques to solve this problem is
to first detect the presence of the existing events and extract segments
of the record containing one event each and then apply a picking
method to each one in order to estimate the corresponding arrival
time. Most well known picking methods that have been proposed,
follow this approach [1], [2], [3], [4], [5], [6], [7],[8].

As it is obvious, the effectiveness of this approach depends strongly
on the ability of the segmentation method to obtain a proper splitting
of the signal, which in turn is heavily affected by uncontrollable
factors such as the magnitude and the duration of the events as well as
their separation in time. Although a number of “statistical” detection
methods has been proposed [9], [10], [11], [12], the majority of
the techniques used in practice are based on the ratio of a Short
Term Average (STA) and a Long Term Average (LTA) of some
Characteristic Function (CF) of the data [13],[14], [15], [16], [17]
The general idea behind these methods is that in areas of noise the
value of the ratio should remain substantially constant, while when
a signal emerges, the STA term should be able to capture the change
much more quickly than the LTA, thus resulting in a sudden rise
of the ratio values. The decision for an arrival is then based on
the comparison of the STA/LTA ratio to a - mostly empirically -
predetermined threshold.

The main reason for this is the fact that the statistical properties
of seismic noise are in general unknown and it is not easy to infer
them, since the factor governing the properties of the noise are not
evident. This constitutes the main difficulty in solving this problem.

In this paper, by exploiting the particular nature of the signals we
are treating, and by using some interesting properties that obeys a
difference based test statistic, as well as its ingredients, we propose
an approach that results in a robust and efficient detection method.

The remaining of this paper is organized as follows. In Section II
the problem formulation is presented and the behavior of the proposed
test statistic in the different parts of a seismogram is considered in
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detail. In Section III, by exploiting a useful property of the proposed
statistic, an efficient solution for the automatic segmentation of a
given seismic record, is proposed. In Section IV the experimental
results we obtained from the application of the proposed method on
both synthetic and real seismograms are presented. Finally, Section
V contains our conclusions.

II. PROBLEM FORMULATION

Let us denote with xn, n = 0, 1, · · · , T − 1, the record from a
given station and let us also assume that during the recording interval
occurred an unknown number, which we denote with K, of seismic
events. If we denote with skn, n = 0, 1, . . . , Tk, the signal produced
by the k-th event and with nk the corresponding wave arrival time,
then xn can be expressed as:

xn = wn +
K∑

k=1

skn−nk
, (1)

where wn is a noise process. The problem at hand is then the detec-
tion of the presence of the events in the record and the segmentation
of the record into signal and noise intervals.

III. THE PROPOSED SOLUTION

In this paper, we consider the problem of seismic record segmen-
tation as a problem of the identification of the noise intervals of
the record. The proposed solution to the above mentioned problem is
based on the use of a suitable test statistic, let us denote by λn, which
indicates a totally different behavior in noise and signal parts of the
given record. To this end, let us consider set T = {0, 1, · · · , T − 1},
where T is the duration of the record, and the subset of T , N ,
containing all the time points n, such that the values of λn is
calculated in noise intervals of the record, with |N | = N being
its cardinality. Then, the set E = T − N , will contain all the time
points n, where the values of λn are affected by the presence of a
seismic event in the record, with |E| = T −N .

Then, by denoting the probability distribution function (pdf) of λn

as fλn(z), and the conditional pdfs of λn given each one of the above
defined sets as fλn(z|N ) and fλn(z|E), respectively, and using the
Total Probability Theorem, we have that fλn(z) can be expressed by
the following mixture:

fλn(z) = p0fλn(z|N ) + p1fλn(z|E), (2)

where p0 ≡ P{N} = N
T

and p1 ≡ P{E} = 1 − p0 are the
corresponding a priori probabilities of occurrence of the sets. The
latter pdf is in fact by itself a mixture of pdfs, determined by the
number and the characteristics of the events contained in the record
(e.g. the amplitudes of the first arrivals as well as the shapes and
the durations of the events). Since we are not in place to make
assumptions over these characteristics, the direct estimation of this
pdf from the data record is in fact not feasible. On the other hand,
since we are considering seismic records of arbitrary length and
seismic events are by nature sparse signals, we can safely assume
that N � T/2 (or equivalently p0 � p1). Under this assumption,
it seems reasonable to follow a strategy that ensures that all needed
estimations are based on the estimation of fλn(z|N ) from the data.
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Since, as mentioned above, we are unaware of either the number or
the form of the recorded events, the discrimination between “signal”
and “noise” can only be based on the available data record, as well as
the values of the used test statistic λn. This last point makes it clear
that the selection of a “proper” test statistic is vital for the successful
solution of the problem. Namely, we are expecting that the better the
ability of the used test statistic in discriminating between segments
belonging to different population is, the better, and more reliable our
estimations will become. A test statistic capable of achieving this
discrimination is proposed in the following subsection. Moreover,
under certain assumptions, which we consider to be valid in the
majority of cases, the pdf governing the behavior of the proposed λn

in noise, namely fλn(z|N ), exhibits certain “generic” properties that
are independent of particular noise models considered. As it is going
to be shortly presented, these properties will become our “vehicle”
to the successful identification of set N , and hence, the solution of
the problem at hand.

A. The Proposed Test Statistic
In this work, the following test statistic

λn = LM+

n − LM−
n−1, n = 0, 1, · · · , T − 1 (3)

is proposed for the solution of the problem at hand, where LM−
n ,

LM+

n are defined as follows:

LM+

n =
1

M

n+M−1∑
k=n

yk , LM−
n =

1

M

n∑
k=n−M+1

yk, (4)

and yn = g(xn), n = 0, 1, · · · , T − 1, is a nonlinear positive
transformation of the available signal xn (e.g., the absolute or the
squared value). Let us now concentrate ourselves on the behavior of
the above defined statistics in the different parts of a seismogram. To
this end, let us consider that ni

k, i = 1, 2 and Tk denote the onset
time, the stopping time and the duration of the k-th, seismic event,
respectively, and discriminate the following two cases regarding the
specific segments of record used for the computation of the above
mentioned statistics.

C1: n ∈ N . From the above definition it is clear that for each

n ∈ N , RVs LM−
n and LM+

n , and consequently RV λn which is
defined by their difference, are computed by using samples belonging
to noise segments of the record. As we have already mentioned,
our main “tool” for the identification of set N is the behavior of
the test statistic λn in this set, i.e. for n ∈ N . In order to assess
this behavior in a statistical manner, certain assumptions have to be

made concerning its ingredients, LM−
n and LM+

n , n ∈ N . More
specifically, in this work the following statements are considered to
be valid, although we can not prove them without imposing some
assumptions on the noise process:

• S1: RVs LM−
n and LM+

n are considered to be identically
distributed (i.d.), according to some (unknown) pdf, which we
denote by fLn(z).

• S2: RVs LM−
n and LM+

n are exchangeable [18], that is their joint
pdf, f

L−
n ,L+

n
(x, y) is bivariate symmetric, i.e. : f

L−
n ,L+

n
(x, y) =

f
L−

n ,L+
n
(y, x).

We must stress at this point that in the case of an i.i.d. noise process,
both S1 and S2 are satisfied. Note though that this is a sufficient and
not a necessary condition. We proceed now to state an interesting
property satisfied by the distribution of the difference of two i.d.
RVs whose joint pdf function exhibits the symmetry mentioned in
S2.
Proposition 1 : If the joint pdf of i.d. RVs X , Y , is bivariate
symmetric, then the pdf of their difference, Z = X − Y is even
symmetric.

A direct consequence of Proposition 1 is that the median value
of the test statistic defined in Equ. (3), for n ∈ N equals 0, or

equivalently, P (λn > 0|N ) = 1/2. As we are going to see in the
next subsection, these properties constitute very useful tools for the
successful identification of set N .
C2: n ∈ E . Contrary to C1, in this case the behavior of the statistics
depends on uncontrollable factors such as the magnitude and the
shape of the events, as well as their separation in time and as such,
cannot be assessed in a statistical manner. It can be explained only
intuitively, by taking into account the particular statistics used, as
well as the general characteristics of the seismic signals, namely the
fact that the energy of the record is higher in signal intervals than
its energy in noise intervals, the “abrupt” change occurring in the
beginning of an event, and the “generic” amplitude envelope of these
particular signals, i.e. their fading nature.

Specifically, let us first concentrate on the sequences LM+

n and

LM−
n , calculated for a given record. These sequences behave as

smoothed positive “envelopes” of yn, following conceptually its
shape in intervals containing events, and attaining low values, around
a constant level, in intervals of noise. Based on this, and due to the
increased energy of the record in signal intervals, compared to the
noise ones, these sequences take higher values during the occurrence
of an event, than they take in intervals of noise, making these statistics
an appropriate segmentation “tool”.

The behavior of λn on the other hand, is different in different parts
of a signal interval, and as such, can not be described “uniformly” for
the whole interval. Based on the above mentioned general characteris-
tics of the seismic signals, the presence of the kth event in the record
is reflected in the λn sequence by the presence of a narrow peak
(of approximately 2M ) samples in the beginning of such intervals
(centered on the onset time of the event), were λn takes large values
(depending on the signal-to-noise ratio), followed by a large interval
(of approximately Tk samples), of values that are biased towards a
negative level (due to the fading of the event amplitude). Note also
that λn, being a difference statistic, is sensitive to the amplitude of
the recorded events, which is a highly desirable feature for the task
at hand. By taking these into account, it becomes apparent that the
behavior of λn in signal intervals is highly different from its behavior
in noise intervals, concerning both the amplitude of the values it
attains, as well as the lack of the assumed symmetry it possesses in
the latter intervals. To put this into a statistical perspective, there are
two main features that differentiate fλn(z) from fλn(z|N ), namely
its “heavy” tails, as a result of the “extreme” values of the statistic
in signal intervals, and the lack of the symmetry property possessed
by the latter pdf (expressed by Proposition 1), again as a result of
the highly non-symmetric behavior of λn in the signal intervals. The
aforementioned behavior of the used statistics in a synthetic data
record, is displayed in Fig. 1.

B. Identification of set N
In this section, we treat the problem of segmentation of the seismic

record. The main idea is to first locate all the intervals of the record
that can be considered as “candidates” for containing seismic events,
and then to remove iteratively in a systematic manner each of these
intervals, up to the point where the remainder of the record can
be considered as “pure” noise. In order to achieve our goal, we
are going to exploit the differences between fλn(z) and fλn(z|N ),
which as presented above, are attributed to the presence of events in
the record. To this end, we are going to define appropriate measures
for quantifying these differences, and a suitable two-step procedure
that will take us from set T (the whole record), to the desired set N .
Specifically, in the first step we exploit the appropriateness of statistic

LM+

n as a segmentation tool and we obtain a “gross” segmentation

of the record, by thresholding the LM+

n sequence, using a very
conservative threshold, thus making sure that all the signal intervals
are selected. In the second step, we identify the desired set by solving
a well defined optimization problem, based on the aforementioned
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(a)

(b)

(c)

Fig. 1. Application of the method to a synthetic record using the setup
of Experiment I. (a): Detection of the signals contained in the record (b):

Sequence of the statistics LM+

n (above) and λn (c): Sequence of the CF
values.

characteristics of fλn(z|N ) . Let us now analyze in detail each
one of the above steps, starting from step one, that is the “gross”
segmentation of the record. Let us consider the following sequence
of intervals

Ê1, Ê2, · · · , ÊL, (5)

resulting from the sequence LM+

n , n = 0, 1, · · · , T − 1 by sequen-
tially performing the following actions:

• A1: find the intervals where the values of LM+

n are greater than
mL, and

• A2: sort the resulting intervals according to the variance of λn

in each one of them, in descending order,

where mL denotes the median value of sequence LM+

n , n =
0, 1, · · · , T − 1, which by taking into account the sparsity of the
seismic events in the data record constitutes a good estimator of the
median of this statistic under the assumption of noise (n ∈ N ),
mL|N .

Since the selected threshold is indeed a very conservative one, we
anticipate that the union of all intervals formed from the application
of action A1, will contain all the segments of the signal intervals
of the record (i.e. all Ek), as well as a great number of other
segments, containing only noise, due to the random fluctuations of

LM+

n around mL, in the noise intervals. Based on the fact that
in intervals containing seismic events λn takes greater values than
in intervals of noise, by sorting the intervals according to A2, the
signal intervals are anticipated to be in the beginning of the resulting
sequence, followed by the ones that contain only noise.

Let us now proceed to the second step of the procedure, namely
the identification of the desired set. To this end, let us define the
following sequence of sets:

Ñl = Ñl−1 \ Êl, Ñ0 = T , l = 1, · · · , L, (6)

where ’\’ denotes set subtraction, formed by iteratively discarding the
“candidate” signal intervals obtained in the first step of the procedure,
from the record. Note now that this sequence of sets can be used for

the definition of the following sequence of pdfs:

fλn(z|Ñl) =
|Ñl−1|
|Ñl|

fλn(z|Ñl−1)−
|Êl|
|Ñl|

fλn(z|Êl), (7)

with fλn(z|Ñ0) ≡ fλn(z), and |Ñl| = |Ñl−1| − |Êl|, by definition.

If there exists a member Ñl� of the set sequence that is a good
approximation of the desired set N , then the corresponding pdf

fλn(z|Ñl�) can be considered as a good approximation fλn(z|N ).
Thus, our goal now is to identify this member of the set sequence
defined in Equ (11). In order to solve this problem we resort to the
above analysis concerning the assumed characteristics of fλn(z|N ).
Specifically, we define the following cost function (CF):

C(Ñl) = E[λ2
n|Ñl] sup

x

∣∣∣∣
∫ 0

−x

fλn(z|Ñl)dz −
∫ x

0

fλn(z|Ñl)dz

∣∣∣∣ ,
(8)

in order to assess the degree by which the estimated pdf exhibits the
aforementioned characteristics, namely the lack of “extreme” values,
measured by its variance, and the symmetry property imposed by
Proposition 1, measured by the second term of the CF. In order to
complete our analysis, the following proposition (that we give without
proof), stating a very interesting statistical property of the difference
of two i.d. RVs is of crucial importance, as we shortly see.
Proposition 2 : Let X , Y be two i.d. RVs, and let m denote their
median value. Let also Z = X−Y . Then P (Z > 0|X > m) = 3/4.
Let us now give a more descriptive outline of the procedure followed.
To this end, let us assume that the first K elements of the sequence
defined in Equ. (5), are intervals that correspond to seismic events,
while the rest L−K correspond to noise, meaning that the solution

we are seeking in this case, is l� = K, or equivalently Ñl� = ÑK .
In the l-th iteration of the procedure, we consider the values of set

{λn|n ∈ Ñl} as a sample drawn from the distribution governed by
the pdf fλn(z|N ) and obtain an estimation of the latter, by a detailed
histogram of the sample. Since the first K intervals of the sequence

(Êl, l = 1, · · · ,K) are signal intervals, for reasons made clear above,

sets {λn|n ∈ Ñl}, l = 1, · · · ,K, will gradually contain fewer
”extreme” values and will increasingly exhibit the aforementioned

even symmetry, up to set {λn|n ∈ ÑK}, which represents the “best”
approximation of set {λn|n ∈ N} in the given example. This will
result in a rapidly decreasing sequence of C(Ñl) values, up to the
K-th iteration. From this point on, although the removed intervals

(ÊK+1, · · · , ÊL) are noise ones, due to the particular way followed

for their identification (recall that from A1, for all n ∈ Êl, L
M+

n >
mL holds), and based on the result of Proposition 2, the values of
λn contained in them are expected to be heavily biased towards a

positive level. As a consequence, sets {λn|n ∈ Ñl}, resulting from

{λn|n ∈ ÑK} by iteratively removing sets {λn|n ∈ Êl}, l = K +
1, · · · , L, will exhibit the even symmetry to an increasingly lesser
degree, thus leading to an increasing sequence of C(Ñl) values, for
l = K + 1 · · · , L. This behavior of C(Ñl) is depicted in Fig 1.c.

Based on the above, we are now in place to define the desired
solution as the member of the sequence of Equ. (6) that leads to the
minimization of C(Ñl) over l, i.e.:

l� = argmin
1≤l≤L

C(Ñl), (9)

resulting in the following estimation of the desired set: Ñl� ≈ N .
Note that in the example of Fig 1.c, C(Ñl) attains its minimum for
l = 3, which is the correct number of events in this case. The result
of the segmentation is indicated in Fig 1.a by the red line. Having
completed the presentation of the proposed technique, in the next
section we are going to apply it in a number of experiments.

IV. EXPERIMENTAL RESULTS

In this section we evaluate the performance of the proposed method
by applying it in both synthetic as well as real data sets.
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A. Experiment I
In the first experiment, we applied the proposed method to a

synthetic data set containing a large number of synthetic records,
and we measured the percentage of successfully detected events as a
function of their Signal-to-Noise Ratio (SNR). The synthetic seismic
signals were modeled as low-pass filtered Gaussian noise, multiplied
by a half-Gaussian window for the effect of amplitude shaping, and a
constant gain, controlling the SNR. In order to construct a data record,
first the noise process wn was created and then a value for the number
of events K was selected randomly in a range [Kmin,Kmax]. Then
the synthetic signals skn were created as described above. Finally, the
onset times were obtained by random selection in the interval [1, T ]
and the resulting “recorded” signal xn was calculated, by using Equ.
(1). In this experiment, the noise process used was the superposition
of an AR(1) process, with its pole equal to 0.7 (thus resulting in
correlated data), and a white Gaussian process. An example of a
synthetic record created using this setup, containing three (3) events
with SNRs 5,5 and 7, respectively is shown in Fig. 1.a. Finally,
for the given experiment, the following selection of the various
parameters used by the method was made: window size M = 200,
record duration T=30000, Kmin = 5, and Kmax = 10. Also, the
positive transformation used was the squared value of the samples,
i.e., yn = g(xn) = x2

n. The measured detection percentage for
values of SNR ranging from -2 to 10 dB is shown in Fig 2. The

Fig. 2. Successful detections as a function of SNR, for the experiment using
the synthetic data set.

curve depicted in this figure is a clear demonstration of the high
performance and the robustness of the proposed method, resulting
in acceptable percentages even in the extremely unfavorable cases
of negative SNRs (taking also into consideration the noise process
used). The detection percentage reaches values close to 1 even for
very low positive SNR values close to 2. Of high importance is also
the fact that the number of “false alarms”, (i.e. noise intervals that
were falsely detected as signal ones) was very low in this experiment,
averaging approximately 0.9 false alarms per record.

B. Experiment II
In this experiment we evaluate the performance of the proposed

method by applying it in real seismic data. The real data set, was
comprised by 300 pre-cut records of continuously recorded seismic
data, during a period of high seismicity. The “true” number of events,
counted by a human analyst, contained in the above mentioned
records were 2312, with different amplitudes and durations. By using
M = 200 (2 sec), the proposed detector was applied to the above
data set and succeeded in identifying 2098 events, with 96 false
alarms. This results in an successful identification in approximately
91% of the cases, thus reinforcing the findings of Experiment I and
confirming its appropriateness for the problem at hand. This is also
evident in Fig. 3 where the results of the solution to the detection
problem for a record real data is shown.

V. CONCLUSIONS

In this paper, the problem of identification of the seismic events
contained from continuously recorded seismic data was examined.

Fig. 3. Application of the proposed method to a real seismic record. The
detected events are indicated by the red line.

The use of a difference test statistic, as well as a two step procedure
for solving the problem at hand, were proposed. The effectiveness of
the proposed technique was confirmed from its application in solving
the detection problem on a series of experiments, where synthetic and
real seismic records were used.
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