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ABSTRACT

This paper addresses the problem of detecting and estimating
hidden periodicity from noisy observations when the noise
distribution is asymmetric with heavy tail on one side. The
ordinary periodogram is less effective in handling such noise.
In this paper, we introduce an alternative periodogram-like
function, called the quantile periodogram. The quantile peri-
odogram is constructed from trigonometric regression where
a specially designed objective function is used to substitute
the squared �2 norm that leads to the ordinary periodogram.
Simulation results are provided to demonstrate the superior
performance of the quantile periodogram in comparison with
the ordinary periodogram when the noise is asymmetrically
distributed with a heavy tail. The asymptotic distribution of
the quantile periodogram is derived under the white noise as-
sumption. Extensions to the multivariate case and the com-
plex case are also discussed.

1. INTRODUCTION

Detection and estimation of hidden periodicity with unknown
frequency in a noisy data record is traditionally handled by the
periodogram. Fisher’s test for hidden periodicity, in particu-
lar, is based on the maximum of standardized periodogram
ordinates [1]. Maximizing the periodogram as a continuous
function of the frequency variable often produces very accu-
rate frequency estimates [2] [3]. While powerful under regu-
lar conditions such as Gaussian white noise, the periodogram
suffers from considerable degradation of performance when
the noise has a heavy-tailed distribution.

If the noise can be adequately modeled by a parametric
distribution, the maximum likelihood approach usually leads
to most effective procedures. But in many cases such models
do not exist. In order to accommodate these situations, which
is the focus of this paper, one needs robust procedures [4] that
perform reasonably well under regular conditions but exhibit
greater robustness under heavy tailed conditions. The meth-
ods considered in [5]–[7] are such examples. These methods
are most effective in situations where the noise distribution is
symmetric with heavy tails on both sides, an example being

the Laplace distribution. When the noise has an asymmet-
ric distribution and the heavy tail is only on one side, these
methods become less effective.

In this paper, we proposed an alternative robust method
suitable for asymmetrically distributed heavy-tail noise. It
is based on a periodogram-like function which we call the
quantile periodogram. Motivated by quantile regression [8],
we construct the quantile periodogram from trigonometric re-
gression by using an alternative criterion to replace the least-
squares criterion that leads to the ordinary periodogram.

In this paper, we demonstrate the effectiveness of the quan-
tile periodogram for detection and estimation of hidden peri-
odicity in asymmetrically distributed heavy-tail noise. We de-
rive the asymptotic distribution of the quantile periodogram
under the white noise condition. We also generalize the quan-
tile periodogram to complex-valued observations and to the
multivariate case for estimating multiple frequencies.

2. QUANTILE PERIODOGRAM

Given a real-valued time series {Y1, . . . ,Yn} of length n, con-
sider the trigonometric quantile regression problem that min-
imizes the objective function

Jn(λ ,βββ ;ω) :=
n

∑
t=1

ρτ(Yt −λ −xT
t (ω)βββ ) (1)

with respect to λ ∈ R and βββ ∈ R
2, where

xt(ω) := [cos(ωt),sin(ωt)]T

is the trigonometric regressor with frequency ω and ρτ(y) is a
nonnegative function indexed by τ ∈ (0,1) that takes the form

ρτ(y) :=

{
τy if y ≥ 0,
−(1− τ)y if y < 0.

For any fixed ω , let λ̂n(ω) and β̂ββ n(ω) denote the minimizer
of Jn(λ ,βββ ;ω). Let λ̂n denote the minimizer of

Jn(λ ) :=
n

∑
t=1

ρτ(Yt −λ ).
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The dependence of these minimizers on τ is suppressed in this
notation for simplicity. Note that λ̂n is just the τ-th sample
quantile of {Y1, . . . ,Yn} [8]. Note also that λ̂n(ω) and β̂ββ n(ω)
can be obtained by linear programming techniques [8].

With this notation, let the τ-th quantile periodogram be
defined as

Qn(ω) := Jn(λ̂n)− Jn(λ̂n(ω),β̂ββ n(ω);ω). (2)

For any fixed ω , it is easy to see that Qn(ω) coincides with
the generalized log likelihood ratio statistic for testing the null
hypothesis H0 : βββ = 0 against the alternative hypothesis H1 :
βββ �= 0 under the assumption that

Yt = λ +xT
t (ω)βββ + εt (t = 1, . . . ,n),

where {εt} is an i.i.d. sequence with probability density func-
tion fε(y) ∝ exp{−ρτ(y)} which is known as an asymmetric
Laplace distribution.

The quantile periodogram Qn(ω) is closely related to the
ordinary periodogram which is usually defined as

In(ω) := n−1

∣∣∣∣
n

∑
t=1

Yt exp(−itω)

∣∣∣∣
2

.

Indeed, it is easy to verify that for any Fourier frequency ω
(i.e., an integral multiple of 2π/n) the ordinary periodogram
can be expressed as

In(ω) = Ln(λ̃n)−Ln(λ̃n(ω),β̃ββ n(ω);ω),

where λ̃n(ω) and β̃ββ n(ω) denote the minimizer of

Ln(λ ,βββ ;ω) :=
1
2

n

∑
t=1

|Yt −λ −xT
t (ω)βββ |2

and λ̃n denotes the minimizer of

Ln(λ ) :=
1
2

n

∑
t=1

|Yt −λ |2.

Note that λ̃n is just the sample mean of {Y1, . . . ,Yn}. As we
can see, the quantile periodogram Qn(ω) is constructed by
simply replacing the least-squares criterion with the quantile
regression criterion.

3. DETECTION OF HIDDEN PERIODICITY

To detect a hidden periodicity with unknown frequency and
unknown noise distribution, a traditional method is Fisher’s
test [1] which employs the statistic

g :=
max{In(ωk)}

∑ In(ωk)
,

where the ωk are the Fourier frequencies in the interval (0,π).
Under the white noise assumption, the periodogram ordinates
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Fig. 1. ROC curves for detection of hidden periodicity using
the g and gQ statistics. Solid line, the gQ test with τ = 0.4;
dashed line, the gQ test with τ = 0.5; dotted line, the gQ test
with τ = 0.6; dash-dotted line, the g test (Fisher). Results are
based on 5000 Monte Carlo runs.

In(ωk) are approximately distributed as i.i.d. (1/2)σ2χ2
2 ran-

dom variables, where σ2 is the variance of the noise. As a
result, the distribution of g under H0 can be approximated by
a well-known distribution so that a suitable threshold can be
easily selected for the test [1, pp. 91–96].

A similar statistic can be constructed on the basis of the
quantile periodogram. Indeed, let

gQ :=
max{Qn(ωk)}

∑Qn(ωk)
.

The following theorem shows that for large sample sizes the
quantile periodogram ordinates Qn(ωk) behave similarly to
the ordinary periodogram ordinates In(ωk), so the justification
for Fisher’s test which is based on g remains valid for the new
test which is based on gQ.

Theorem 1. [9] Let {Yt} be an i.i.d. sequence with probabil-
ity distribution function F(y) satisfying F(y + λ )−F(λ ) =
Ḟ(λ )y+O(|y|2) for small |y| and Ḟ(λ ) > 0, where λ denotes
the τ-th quantile of F(y) such that F(λ ) = τ . Let {ωk} be a
finite set of Fourier frequencies. Then, as n→ ∞, {Qn(ωk)} is
asymptotically distributed as {(1/2)η2ξk}, where the ξk are
i.i.d. χ2

2 random variables and η2 := τ(1− τ)/Ḟ(λ ).

To compare the statistical performance of these tests, Fig.
1 depicts their ROC curves based on a Monte Carlo simula-
tion. In this experiment, the time series takes the form

Yt = cos(ω0t +φ)+ et (t = 1, . . . ,n), (3)
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where ω0 = 2π ×0.1, φ ∼U(−π,π), and n = 50. The noise
{et} takes the form et = c(ζt −μ), where the ζt are i.i.d. log-
normal random variables such that {log(ζt)} ∼ i.i.d. N(0,1).
The location and scale parameters μ and c > 0 are chosen
such that {et} has mean zero and the SNR equals −6 dB. As
we can see from Fig. 1, the gQ statistic outperforms the g
statistic by a large margin. Note that the gQ statistic performs
better with τ = 0.4 than it does with τ = 0.5 or 0.6 because
the effective SNR in the quantile periodogram [6] [9], which
is proportional to 1/η2, is higher when τ = 0.4.

To better understand this behavior, Fig. 2 depicts the ordi-
nary periodogram and the quantile periodogram (with τ = 0.4
and 0.5) for a realization of the time series under H1. In
this example, the ordinary periodogram completely misses the
hidden periodicity whereas the quantile periodogram detects
it with a large spike at the correct frequency. Fig. 2(a) shows
that strong oscillation exists in the time series plot not around
the sample mean but around a much lower level. This is due
entirely to the fact that the noise has a much heavier upper
tail. What the ordinary periodogram depicts is essentially the
oscillations around the mean. The quantile periodogram, on
the other hand, is capable of depicting oscillations at other
levels with a suitable choice of τ .

4. FREQUENCY ESTIMATION

As with the ordinary periodogram [2], the unknown frequency
of the hidden periodicity can be estimated by the maximizer
of a quantile periodogram.

To demonstrate, let {Yt} take the form (3) as in the pre-
vious section except that the frequency parameter ω0 is also
randomized to have a uniform distribution between 2π × 0.1
and 2π × 0.1 + 2π/n. The maximizer of the quantile peri-
odogram as a continuous function of ω is obtained numeri-
cally with the function optimize in the software package R
which implements a bisection algorithm. The initial interval
for the bisection search is taken to be (ω̃n−2π/n, ω̃n+2π/n),
where ω̃n denotes the maximizer of the quantile periodogram
constrained at the Fourier frequencies. The maximizer of the
ordinary periodogram is computed in the same way.

Fig. 3 depicts the mean-square error (MSE) for estimat-
ing f0 := ω0/(2π) by maximizing the quantile and ordinary
periodograms for different values of SNR. Note that the max-
imizer of the quantile periodogram with τ = 0.5 is nothing
but the nonlinear least absolute deviations (NLAD) estimator
discussed in [7], which is known to be robust against symmet-
rically distributed heavy-tailed noise.

As can be seen from Fig. 3, while the NLAD estimator
remains superior to the ordinary periodogram maximizer in
this case, the quantile periodogram maximizer with the choice
τ = 0.4 produces even more accurate estimates across the
SNR range considered. The quantile periodogram maximizer
also reduces the SNR threshold, a value of the SNR below
which the estimation accuracy deteriorates rapidly.
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Fig. 2. A time series with hidden periodicity and its ordi-
nary and quantile periodograms as functions of f := ω/(2π).
(a) The time series. (b) Ordinary periodogram. (c) Quantile
periodogram with τ = 0.4. (d) Quantile periodogram with
τ = 0.5. Dotted line in (a) depicts the sample mean. Dashed
line in (b)–(d) shows the location of the hidden frequency. All
periodograms are standardized so as to add up to unity.
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Fig. 3. Mean-square error for frequency estimation by max-
imizing the ordinary and quantile periodograms. Slid line,
quantile periodogram with τ = 0.4; dashed line, quantile pe-
riodogram with τ = 0.5 (NLAD); dotted line, quantile pe-
riodogram with τ = 0.6; dash-dotted line, ordinary peri-
odogram. Results are based on 5000 Monte Carlo runs.

5. EXTENSIONS

The methodology can be easily extended to the case of multi-
ple periodicities by considering the objective function

Jn(λ ,βββ ;ωωω) :=
n

∑
t=1

ρτ(Yt −λ −xT
t (ωωω)βββ ),

where ωωω := [ω1, . . . ,ωp]
T is the multivariate frequency vari-

able, xt(ωωω) := [cos(ω1t),sin(ω1t), . . . ,cos(ωpt),sin(ωpt)] is
the corresponding trigonometric regressor. Let λ̂n(ωωω) and
β̂ββ n(ωωω) denote the minimizer of Jn(λ ,βββ ;ωωω) for fixed ωωω . Then,
the multivariate τ-th quantile periodogram can be defined as

Qn(ωωω) := Jn(λ̂n)− Jn(λ̂n(ωωω),β̂ββ n(ωωω);ωωω),

where λ̂n and Jn(λ ) are the same as in the univariate case.
As a generalization of the multivariate Laplace periodogram
discussed in [10], the multivariate quantile periodogram is ca-
pable of dealing with closely spaced hidden periodicities.

The methodology can also be extended to the complex
case by replacing ρτ(y) with

ρτ,c(y) := 2{ρτ(ℜ(y))+ρτ(ℑ(y))}

and considering the objective function

Jn,c(λ ,βββ ;ωωω) :=
n

∑
t=1

ρτ,c(Yt −λ −xT
t (ωωω)βββ ),

where xt(ωωω) := [exp(iω1t), . . . ,exp(iωpt)]T is the complex
trigonometric regressor and where λ ∈ C and βββ ∈ C

p are
complex parameters. With λ̂n(ωωω) and β̂ββ n(ωωω) denoting the
minimizer of this objective function for fixed ωωω , and with λ̂n

denoting the minimizer of

Jn,c(λ ) :=
n

∑
t=1

ρτ,c(Yt −λ ),

the corresponding quantile periodogram can be defined as

Qn,c(ωωω) := Jn,c(λ̂n)− Jn,c(λ̂n(ωωω),β̂ββ n(ωωω);ωωω).

In the univariate case, an asymptotic theory similar to Theo-
rem 1 can be developed under the assumption that the real and
imaginary parts of {Yt} are i.i.d. sequences with probability
distribution function F(y) which satisfies the assumptions of
Theorem 1. The only difference is the scaling constant takes
the form η2

c := 2η2. This is consistent with the doubling of
the power spectrum for complex white noise in comparison
with the power spectrum of the real and imaginary parts of
the complex white noise.
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