
OPTIMAL ESTIMATION OF HYBRID MODELS IN STATE-SPACE WITH FIR STRUCTURES

Yuriy S. Shmaliy, Oscar Ibarra-Manzano

Electronics Dept., Guanajuato University, Salamanca, 36855, Mexico

ABSTRACT

An optimal finite impulse response (FIR) estimator is adapted

for discrete filtering, smoothing, and prediction of hybrid

(continuous/discrete) models over N nearest past measure-

ment points. Its unbiased FIR (UFIR) version ignoring noise

and initial errors is also discussed for near optimal estimation

when N � 1. The UFIR estimator is represented with an

iterative Kalman-like algorithm efficient for highly oversam-

pled data. An example of applications is given for the Global

Positioning System-based measurement of time errors in a

crystal clock.

Index Terms— Hybrid state-space model, optimal FIR

estimator, iterative UFIR algorithm

1. INTRODUCTION

Measurement is often provided in continuous time employing

analog sensors, whereas data are processed in DSP units us-

ing computational power. In such cases, the state-space model

becomes hybrid (continuous/discrete) and discrete-time esti-

mators are used. The estimator can be designed by combining

the Kalman-Bucy [1] and Kalman [2] algorithms which, how-

ever, are known to have poor robustness against temporary

model uncertainties [3] and high sensitivity to outliers [4]. To

improve this performance, the Kalman filter was robustified

by Masreliez and Martin in [5]. On the other hand, Jazwinski

proposed in [6] using a limited memory filter characterizing

it as the only device for preventing divergence in the presence

of unbounded perturbations in the system [7]. With decades,

the limited memory filters derived within Bayesian and max-

imum likelihood frameworks [6, 8, 9] have been developed to

the finite impulse response (FIR) ones via the convolution

[3, 10, 11]. Important distinctive features of FIR estimators

are the bounded input/bounded output (BIBO) stability [6,7],

better robustness against temporary uncertainties [3, 11], and

low sensitivity to noise and initial errors [10, 12].

In this paper, we adapt the estimators proposed in [10,

13] for p-shift optimal and unbiased FIR filtering (p = 0),

smoothing (p < 0), and prediction (p > 0) of hybrid state-

space models.

2. STATE-SPACE MODEL

Most generally, the K-state equation describing a linear time-

varying system can be written as

d

dt
x(t) = A(t)x(t) + B(t)w(t) , (1)

where x(t) ∈ RK is the state vector, A(t) ∈ RK×K is the

system matrix, and B(t) ∈ RK×P . The system noise vec-

tor w(t) ∈ RP , is supposed to have zero mean components,

E{w(t)} = 0, and the covariance

Qw(τ, θ) = E{w(τ)wT (θ)} . (2)

A solution to (1) at discrete point tn with the initial state

x(tn−1) at tn−1 can be written as

x(tn) = Φ(tn, tn−1)x(tn−1) +

tn∫
tn−1

Φ(tn, τ)B(τ)w(τ) dτ ,

(3)

where Φ(t, θ) ∈ RK×K , θ < t, is the state transition matrix

having the properties:

d

dt
Φ(t, θ) = A(t)Φ(t, θ) , (4)

Φ(tn, tm) = Φ(tn, tn−1)Φ(tn−1, tn−2) . . .Φ(tm+1, tm) ,
(5)

where m < n and Φ(θ, θ) = I. By xn � x(tn), one has

xn = Φ(tn, tn−1)xn−1 + w̄n , (6)

where the zero mean noise vector w̄n and its covariance

Qw̄(i, j) = E{w̄iw̄T
j } are, respectively,

w̄n =

tn∫
tn−1

Φ(tn, τ)B(τ)w(τ) dτ , (7)

Qw̄(i, j) =

ti∫
ti−1

tj∫
tj−1

Φ(ti, τ)B(τ)Qw(τ, θ)BT (θ)

×ΦT (tj , θ) dθ dτ . (8)

In discrete time, the M -state measurement equation is

yn = Cnxn + Dnvn , (9)
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where yn ∈ ZM is the measurement vector, Cn ∈ ZM is

the measurement matrix and Dn ∈ ZM×M . The zero mean,

E{vn} = 0, measurement noise vn ∈ ZM , has the covari-

ance

Qv(i, j) = E{vivT
j } (10)

and it is commonly implied that E{w(ti)vT
j } = 0.

In order to provide FIR estimation, (6) and (9) can be ex-

pended on a horizon of N nearest past measurement points,

from m = n − N + 1 to n, as [10]

Xn,m = An,mxm + Bn,mW̄n,m , (11)

Yn,m = Cn,mxm + Gn,mW̄n,m + Dn,mVn,m ,(12)

where Xn,m ∈ ZKN , Yn,m ∈ ZMN , W̄n,m ∈ ZPN , and

Vn,m ∈ ZMN are specified with, respectively,

Xn,m =
[
xT

n xT
n−1 . . . xT

m

]T
, (13)

Yn,m =
[
yT

n yT
n−1 . . . yT

m

]T
, (14)

W̄n,m =
[
w̄T

n w̄T
n−1 . . . w̄T

m

]T
, (15)

Vn,m =
[
vT

n vT
n−1 . . . vT

m

]T
. (16)

By (11), Φ(tm, tm) = I, Φn,m � Φ(tn, tm), and

C̄n,m = diag
(
Cn Cn−1 . . . Cm︸ ︷︷ ︸

N

)
, (17)

matrices An,m ∈ ZKN×K , Bn,m ∈ ZKN×PN , Cn,m ∈
ZMN×K , Gn,m ∈ ZMN×PN , and Dn,m ∈ ZMN×MN at-

tain the forms, respectively,

An,m = [ΦT
n,m ΦT

n−1,m ... ΦT
m+1,m I ]T , (18)

Bn,m =

⎡
⎢⎢⎢⎢⎢⎣

I Φn,n−1 . . . Φn,m+1 Φn,m

0 I . . . Φn−1,m+1 Φn−1,m

...
...

. . .
...

...

0 0 . . . I Φm+1,m

0 0 . . . 0 I

⎤
⎥⎥⎥⎥⎥⎦

,

(19)

Cn,m = C̄n,mAn,m , (20)

Gn,m = C̄n,mBn,m , (21)

Dn,m = diag
(
Dn Dn−1 . . . Dm︸ ︷︷ ︸

N

)
. (22)

3. OPTIMAL FIR ESTIMATE

By the gain matrix Hn,m(p) ∈ ZK×MN applied to (12) and

(14), the p-shift FIR estimate x̂n+p|n can be found at n+p as

x̂n+p|n = Hn,m(p)Yn,m (23a)

= Hn,m(p)(Cn,mxm + Gn,mW̄n,m

+Dn,mVn,m) . (23b)

The gain H̃n,m(p) will be optimal in the minimum mean

square error (MSE) sense by the orthogonality condition [14]

leading to

0 = E{[xn+p − H̃n,m(p)(Cn,mxm + Gn,mW̄n,m

+Dn,mVn,m)](Cn,mxm + Gn,mW̄n,m

+Dn,mVn,m)T } . (24)

Following [10], H̃n,m(p) can be found from (24) to be

H̃n,m(p) = [H̄n,m(p)Zn,m + Z̄w(p)](Zn,m + Z̃w + Z̃v)−1 ,
(25)

where the auxiliary matrices are

Zn,m = Cn,mRmCT
n,m , (26)

Z̃w � Z̃w(n,m) = Gn,mΨ̄wGT
n,m , (27)

Z̃v � Z̃v(n,m) = Dn,mΨvDT
n,m , (28)

Z̄w(p) � Z̄w(n,m, p) = B̄n+p,mΨ̄w(p)GT
n,m , (29)

the mean square initial state is Rm = E{xmxT
m}, the noise

covariance function matrices are given by

Ψ̄w(p) � Ψ̄w(n,m, p) = E{W̄n+p,mW̄T
n,m} , (30)

Ψv � Ψv(n,m) = E{Vn,mVT
n,m} , (31)

and the unbiased gain

H̄n,m(p) = Φn+p,m(CT
n,mCn,m)−1CT

n,m (32)

satisfies the unbiasedness condition

E{x̃n|n} = E{xn} . (33)

The mean square initial state function Zn,m can be found

by solving the discrete algebraic Riccati equation [10],

0 = Zn,m(Z̃w + Z̃v)−1Zn,m + 2Zn,m + Z̃w + Z̃v

−Yn,mYT
n,m(Z̃w + Z̃v)−1Zn,m , (34)

which solution can be found either following [15] or numeri-

cally.

3.1. Unbiased FIR Estimate

Utilizing (32), the unbiased FIR estimate can be written as

x̄n+p|n = H̄n,m(p)Yn,m (35a)

= Φn+p,m(CT
n,mCn,m)−1CT

n,mYn,m .(35b)

It has been shown in [16] that (35a) becomes virtually op-

timal when N � 1 that makes it attractive for engineering

applications. On the other hand, large N implies the compu-

tational problem that can be circumvented with the iterative

Kalman-like algorithm proposed in [13]:

x̄l+p|l = Φl+p,l+p−1x̄l+p−1|l−1

+Φl+p,l+p−1Υ−1
l (p)FlCT

l

×[yl − ClΥl(p)x̄l+p−1|l−1] , (36)
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where

Fl = Φl,l−1(Ξl + F−1
l−1)

−1ΦT
l,l−1 , (37)

Ξl = ΦT
l,l−1C

T
l ClΦl,l−1 , (38)

Fs = Φs,m(ts, tm)ΛΦT
s,m(ts, tm) , (39)

x̄s+p|s = Φs+p,mΛCT
s,mYs,m , (40)

Λ = (CT
s,mCs,m)−1 , (41)

Υl(p) = Φl,l−|p|−1 , if p < 0 (smoothing) (42)

= Φl,l−1 , if p = 0 (filtering)
= I , if p = 1 (1-step prediction)
= Φ−1

l+p−1,l , if p > 1 (prediction) .

s = lmin − 1, m = n − N + 1, and an iterative variable

l ranges from lmin to n. To avoid singularities, one can set

lmin � m + K. The true estimate is taken at l = n.

4. APPLICATION TO CLOCK MODEL

It is known from [17] that the clock time interval error x(t) is

mostly caused by the clock oscillator instabilities and can be

modeled with the finite Taylor series expansion as

x(t) = x10 + x20t +
x30

2
t2 + wx(t) , (43)

where x10 = x1(0), x20 = x2(0), and x30 = x3(0)
are the clock states at zero, namely the time error (first

state), fractional frequency offset (second state), and lin-

ear frequency drift rate (third state), respectively. Noise

wx(t) = ϕ(t)/2πνnom is defined by the oscillator random

phase deviation ϕ(t) and nominal frequency νnom in Hz.

In state-space, (43) is represented with

A =

⎡
⎣ 0 1 0

0 0 1
0 0 0

⎤
⎦ (44)

and B identity and can be translated to discrete time with

Φn,n−1 =

⎡
⎣ 1 τ τ2

2
0 1 τ
0 0 1

⎤
⎦ (45)

and the time-invariant noise covariance matrix [16]

Qw(τ) = τ

⎡
⎢⎣

q1 + q2τ2

3 + q3τ4

20
q2τ
2 + q3τ3

8
q3τ2

6
q2τ
2 + q3τ3

8 q2 + q3τ2

3
q3τ
2

q3τ2

6
q3τ
2 q3

⎤
⎥⎦ ,

(46)

in which q1, q2, and q3 are the diffusion parameters [18] as-

sociated with the clock white noise. Note that clock has also

colored Gaussian noise components.

Measurement is commonly described with (9) having

C = [ 1 0 0 ] and D identity. In our experiment, it was
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Fig. 1. Typical GPS-based TIE measured and states estimated of

the OCXO-based clock: (a) first state and (d) second state.

organized for the crystal clock imbedded in the Stanford Fre-

quency Counter SR620. Another SR620 was used to measure

each second the time difference between the clock and GPS

SynPaQ III Timing Sensor. To obtain the reference trend, si-

multaneous measurement was provided for the Symmetricom

Cesium Frequency Standard CsIII. In such a set, the GPS

timing sensor induces the sawtooth noise vn uniformly dis-

tributed from −50 ns to 50 ns with the variance Qv = 502/3
ns2 in the presence of the GPS time temporary uncertainty.

Following [19], the optimal averaging interval was found to

be Nopt = 3500 and the 3-state Kalman-like filter (36)–(42)

used as an optimal filter with p = 0. For the 3-state Kalman

algorithm, (46) was specified following [18] via the Allan

deviation available for the clock investigated.

The x1n and x2n estimated are sketched in Fig. 1a and

Fig. 1b, respectively, in line with the reference measurement

(dashed). An analysis reveals that the white Gaussian approx-

imation of Qw(τ) by (46) is unsuccessful and the Kalman fil-

ter produces the worst estimates. It is especially neatly seen

in the estimates of the second state (Fig. 1b). Just on the

contrary to the Kalman filter, the Kalman-like one ignores

noise and initial errors and relies only on Nopt. Provided

Nopt = 3500, this filter shows better robustness against the
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Table 1. Errors of the OCXO-based Clock State Estimation with

the UFIR Kalman-Like and Kalman Algorithms

Filter Stdev, ns Bias, ns RMSE, ns EB, ns

N = 1500 5.236 5.582 7.654 4.473

N = 2500 4.504 3.292 5.579 3.464

N = 3500 3.401 1.431 3.690 2.928

Kalman 6.287 5.774 8.537

GPS time uncertainties and produces much smaller errors, es-

pecially for the second state (Fig. 1b). It works better even

with lower values of N = 2500 and N = 1500.

Table 1 gives us statistics for the Kalman and Kalman-like

estimates in line with the error bound (EB) calculated fol-

lowing [20]. Although the Kalman-like algorithm certainly

works better, neither of these algorithms fits the EB special-

ized for white Gaussian noise. This is due to the clock colored

noise and the GPS time temporary uncertainties in the mea-

surement.

5. CONCLUSION

The p-shift optimal FIR estimator was adapted for discrete-

time filtering, smoothing, and prediction of hybrid (contin-

uous/discrete) state-space models over N nearest past mea-

surement points. As a special case, we have considered the

UFIR one ignoring noise and initial errors and becoming near

optimal when N � 1. For fast computation, the latter was

represented with the iterative Kalman-like form. As an exam-

ple of applications, we have exploited the Kalman-like UFIR

and Kalman algorithms for state estimation in an ovenized

crystal clock via the GPS-based measurements of time errors.

It has been shown that the clock colored noise and GPS time

temporary uncertainties force the Kalman filter to produce

large errors. In contrast, the UFIR filter demonstrates bet-

ter robustness, lower excursions, and smaller random noise at

the output.
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