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ABSTRACT

As abstract representations of relational data, graphs and networks
find wide use in a variety of fields, particularly when working in non-
Euclidean spaces. Yet for graphs to be truly useful in in the context
of signal processing, one ultimately must have access to flexible and
tractable statistical models. One model currently in use is the Chung-
Lu random graph model, in which edge probabilities are expressed
in terms of a given expected degree sequence. An advantage of this
model is that its parameters can be obtained via a simple, standard
estimator. Although this estimator is used frequently, its statistical
properties have not been fully studied. In this paper, we develop
a central limit theory for a simplified version of the Chung-Lu
parameter estimator. We then derive approximations for moments
of the general estimator using the delta method, and confirm the
effectiveness of these approximations through empirical examples.

Index Terms— graphs and networks, central limit theory, delta
method, given expected degree models, parameter estimation

1. INTRODUCTION

A graph is defined as a set of nodes (or vertices) and edges,
where each edge indicates a relationship between a pair of nodes
(or a node and itself, if self-loops are allowed). The simplicity of
this definition, however, belies a mathematical object of immense
flexibility and expressive power. Today, graphs arise in a wide
variety of application domains, and graph analysis has become a
pervasive and critical area of research. (For an extensive review
of existing graph models, methods, and applications, we direct the
reader to [1, 2].)

Let G be an undirected, unweighted graph with n nodes. In
order to take full advantage of G as an abstract representation of
underlying data, one often will choose to characterize G in terms of a
statistical model. One of the simplest approaches is to assume G is a
realization of an Erdős-Rényi random graph, where the existence of
each edge is determined by an independent Bernoulli trial with fixed
success probability p ∈ (0, 1). Equivalently, if we define A = {aij}
to be the adjacency matrix of G, (i.e. A is a binary symmetric matrix
where aij = 1 if and only if there exists an edge between the i-th
and j-th nodes), the Erdős-Rényi model assumes {aij : i ≥ j} are
independent and identically distributed Bernoulli random variables
with parameter p.
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Unfortunately, though simple and tractable, the Erdős-Rényi
model often is not practical for real-world applications. For example,
consider the degrees of each node, given by di =

∑n
j=1 aij for

i = 1, . . . , n. Under the Erdős-Rényi model, d1, . . . , dn are
identically distributed binomial random variables, with expected
value E (di) = np (assuming self-loops are allowed). Consequently,
this model is not effective at representing data whose corresponding
degree sequence is far from constant, such as any data that exhibits
power-law behavior.

One way to address this shortcoming is to define a set of node
weights {w1, . . . , wn} where wi ∈ (0, 1) for i = 1, . . . , n, and
assume that edges exist independently between pairs of nodes i and
j with probability pij = wiwj . This approach—which can be
viewed as a generalization of the Erdős-Rényi model—is known as
the Chung-Lu model [3, 4]. Since its introduction, the Chung-Lu
model has proved useful in a number of settings, particularly in the
context of modularity theory, where it has been applied to problems
such as finding community structure [5], graph partitioning [6], and
detection of dense subgraphs in large graphs [7].

As is true for any parametric statistical model, practical applica-
tion of the Chung-Lu model requires either that we know the model
parameters a priori, or (more typically) that we can estimate them
given observed data. The standard estimator for the node weights is

ŵi =
di(∑n

j=1 dj
)1/2 , (1)

where d1, . . . , dn denote the observed degrees of each node. Though
frequently used in practice [3–7], this estimator has not been well
studied, and its theoretical properties have received little attention.

In this paper, we investigate statistics of the estimator in (1),
including results for both finite n and asymptotically as n → ∞.
We begin by formally defining the Chung-Lu model in Section 2.
In Section 3, we develop a central limit theory for a simplified
version of the estimator, and derive approximations for moments
of the general estimator using an approach known as the delta
method. Finally, we validate our theoretical results and study the
effectiveness of our approximations through a series of empirical
examples in Section 4, and close with a summary.

2. THE CHUNG-LU RANDOM GRAPH MODEL

Let G be an undirected, unweighted random graph with n nodes, and
let w = [w1 · · · wn]

T be a vector of weights such that wi ∈ (0, 1)
for i = 1, . . . , n. To simplify computation we allow G to have self-
loops, although our results may be extended to the case where such
edges are prohibited.
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We say that G follows a Chung-Lu random graph model with n
nodes and parameter w, denoted G(n,w), if the presence or absence
of each edge is determined by an independent Bernoulli trial, with
the probability pij of an edge between the i-th and j-th nodes given
by pij = wiwj . Alternatively, if A = {aij} is the adjacency
matrix of G, then an equivalent definition is to say that G follows a
Chung-Lu model if {aij : i ≥ j} are independent Bernoulli random
variables with corresponding parameters {pij}.

Let di denote the degree of the i-th node, for i = 1, . . . , n. A
basic property of the Chung-Lu model is that

E (di) =
n∑

j=1

E (aij) =
n∑

j=1

wiwj = wi ‖w‖1 , (2)

where ‖w‖p denotes the vector p-norm ‖w‖p ≡ (∑n
i=1 |wi|p

)1/p
.

Since the parameter vector w is proportional to the expected degree
sequence, the Chung-Lu model is also referred to as the “given
expected degree” model [3].

As discussed in Section 1, in practice one rarely has prior
knowledge of w, and thus it must be estimated from data. In the
case of the Chung-Lu model, the estimator given in (1) is commonly
used to compute ŵ1 . . . , ŵn given a sequence of observed degrees
d1, . . . , dn. Although this approach is used frequently in practice
for fitting the Chung-Lu model to empirical data, its characteristics
as a parameter estimator have yet to be properly studied. Thus, we
proceed by determining expressions for statistics of this estimator
and studying some of its asymptotic error properties.

3. STATISTICS OF CHUNG-LU PARAMETER ESTIMATES

For the remainder of the paper, we assume G is an observed random
graph generated according to the Chung-Lu model with n nodes
and weight vector w. We denote the adjacency matrix of G by the
n × n binary symmetric matrix A = {aij}, and denote the degree
sequence of G by {d1, . . . , dn} where di =

∑n
j=1 aij .

As a function of the degree sequence of a random graph,
the parameter estimator given by (1) is itself a random variable.
Accordingly, to determine the effectiveness of ŵ = [ŵ1 · · · ŵn]

T

as an estimator, we will want to study its distribution for finite n,
and determine whether it converges to the true weight vector w as
n → ∞.

3.1. Preliminaries

In addition to the expression for E (di) given in (2), we will find it
necessary to compute second moments of the form E (di dj) both
when i = j and i �= j, as well as the variance var (di) and the
covariance cov (di, dj). When i = j, we have

E
(
d 2
i

)
= E

⎡
⎣
(

n∑
j=1

aij

)(
n∑

j′=1

aij′

)⎤
⎦

=
n∑

j=1

E
(
a2
ij

)
+

n∑
j=1

∑
j′ �=j

E (aijaij′)

=
n∑

j=1

wiwj +
n∑

j=1

∑
j′ �=j

w2
iwjwj′

= wi ‖w‖1 − w2
i

n∑
j=1

w2
j + w2

i

n∑
j=1

n∑
j′=1

wjwj′

= wi ‖w‖1 − w2
i ‖w‖22 + w2

i ‖w‖21 , (3)

and when i �= j, we have

E (di dj) = E

⎡
⎣
(

n∑
j′=1

aij′

)(
n∑

i′=1

ai′j

)⎤
⎦

= E
(
a2
ij

)
+

n∑
i′=1

n∑
j′=1

E (aij′ai′j) I
(
i �= i′, j �= j′

)

= wiwj +
n∑

i′=1

n∑
j′=1

wiwj′wi′wj I
(
i �= i′, j �= j′

)

= wiwj − w2
iw

2
j + wiwj

n∑
i′=1

n∑
j′=1

wi′wj′

= wiwj − w2
iw

2
j + wiwj ‖w‖21 ,

where I (·) denotes the indicator function (i.e. I (·) = 1 when its
argument is true, and I (·) = 0 otherwise). Finally, we have

var (di) = E
(
d2i
)− E

2 (di) = wi ‖w‖1 − w2
i ‖w‖22 ,

and

cov (di, dj) = E (di dj)− E (di)E (dj) = wiwj − w2
iw

2
j .

3.2. Error distribution for a simplified estimator

To proceed, let us temporarily assume that ‖w‖1 =
∑n

i=1 wi is
known, as this restricted setting will provide greater insight into the
behavior of the general estimator. In this case, we could obtain
a simpler estimator by replacing

∑n
j=1 dj in (1) with its expected

value, yielding

ŵi =
di(

E

(∑n
j=1 dj

))1/2 =
di(∑n

j=1 E (dj)
)1/2 =

di
‖w‖1

.

Thus, when ‖w‖1 is known the traditional estimator reduces to a
re-scaling of the observed degrees. This estimator is unbiased, as

E (ŵi − wi) =
E (di)

‖w‖1
− wi = 0.

Its mean squared error (MSE) is given by

MSE (ŵi) = E
[
(ŵi − wi)

2] = E
(
ŵ2

i

)− w2
i

=
wi

‖w‖1
− w2

i

‖w‖22
‖w‖21

,

where

E
(
ŵ2

i

)
=

E
(
d2i
)

‖w‖21
=

wi

‖w‖1
− w2

i

‖w‖22
‖w‖21

+ w2
i ,

from (3). Consequently, as long as ‖w‖1 grows without bound as
n → ∞ (i.e. as long as w is not an absolutely summable sequence),
we will have MSE (ŵi) → 0 as n → ∞.

We also can prove a central limit theorem (CLT) for this
estimator. Recall that for fixed i, {ai1, . . . , ain} is a sequence of
independent Bernoulli random variables with corresponding proba-
bilities {wi w1, . . . , wi wn}. Next, define

μj ≡ E (aij) = wiwj ,

σ2
j ≡ var (aij) = wiwj − w2

iw
2
j ,
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and

s2n ≡
n∑

j=1

σ2
j = wi ‖w‖1 − w2

i ‖w‖22 = var (di) .

It is relatively straightforward to show that Lyapunov’s condition [8]

lim
n→∞

1

s2+δ
n

n∑
j=1

E

(
|aij − μj |2+δ

)
= 0, (4)

holds for δ = 1, in particular by noting that 0 < wiwj < 1 implies

E
(|aij − μj |3

)
= (1− wiwj)

3 wiwj + (wiwj)
3 (1− wiwj)

≤ (1− wiwj)wiwj + (wiwj) (1− wiwj)

= 2wiwj − 2w2
iw

2
j ,

and thus

1

s3n

n∑
j=1

E
(|aij − μj |3

) ≤
∑n

j=1 2wiwj − 2w2
iw

2
j

s3n
=

2

sn
,

which tends to zero as n → ∞ (again, as long as ‖w‖1 grows
without bound). Consequently, we can apply the Lyapunov CLT [8],
which states that under the condition in (4),

1

sn

n∑
j=1

(aij − μj) =
di − wi ‖w‖1

sn
=

ŵi ‖w‖1 − wi ‖w‖1
sn

converges in distribution to a standard normal random variable. In
other words, for sufficiently large n the distribution of ŵi can be
approximated arbitrarily well by the normal distribution

N
(
wi,

wi

‖w‖1
− w2

i

‖w‖22
‖w‖21

)
. (5)

3.3. Approximate error statistics for general estimator

We now return to the standard Chung-Lu parameter estimator

ŵi = g (d | i) = di(∑n
j=1 dj

)1/2 , (6)

now denoted as a function g : Rn → R of the observed degree vector
d = [d1 · · · dn]

T (conditioned on the node index i). Computing
the distribution of this estimator is challenging, as g is nonlinear
function of a vector whose elements are neither independent nor
identically distributed. One potential approach would be to employ
the multivariate delta method [9], which involves formulating a
CLT through a Taylor series expansion of g (d). Unfortunately, this
approach requires us to begin with a multivariate CLT for d, which
is itself difficult to establish, as the sequence {d1, . . . , dn} is both
dependent and non-stationary.

Nevertheless, we can still use the Taylor series to obtain ap-
proximations of the mean and variance of g (d) under the Chung-
Lu model. Furthermore, numerical examples suggest that d does
exhibit CLT-like behavior, and thus normal approximations using
these moments will tend to be quite good for large n. (Empirical
results will be discussed further in Section 4.)

We begin by expanding g as a multivariate Taylor series,
centered at the mean vector ξ = E (d). We can approximate g (d)
by retaining only the first-order terms, yielding

g (d) ≈ g (ξ) +
n∑

i=1

g′i (ξ) (di − ξi) , (7)

where g′i denotes the i-th element of the gradient of g,

g′i (d) ≡ ∂

∂di
g (d) ,

for i = 1, . . . , n. Using (7), we can approximate the expected value
of g (d) as

E (g (d)) ≈ E

[
g (ξ) +

n∑
i=1

g′i (ξ) (di − ξi)

]
= g (ξ) , (8)

and the second moment of g (d) as

E
(
g2 (d)

) ≈ E

[(
g (ξ) +

n∑
i=1

g′i (ξ) (di − ξi)

)2]

= g2 (ξ) +
n∑

i=1

n∑
j=1

g′i (ξ) g
′
j (ξ) cov (di, dj) .

Combining these two expressions, we can approximate the variance
of g (d) as

var (g (d)) ≈
n∑

i=1

n∑
j=1

g′j (ξ) g
′
j (ξ) cov (di, dj) . (9)

To obtain approximate moments of the Chung-Lu estimator, we
can apply the approximations in (8)–(9) using the definition of g
given in (6). For the expected value of ŵi, this yields

E (ŵi) = E (g (d | i)) ≈ g (ξ | i)

=
ξi(∑n

j=1 ξj
)1/2

=
wi ‖w‖1(∑n

j=1 wj ‖w‖1
)1/2

= wi .

where ξi = E (di) = wi ‖w‖1 from (2). Thus, the standard Chung-
Lu estimator is approximately unbiased for finite n.

To compute the approximate variance of the estimator, we first
need to calculate partial derivatives g′j for j = 1, . . . , n. We have

g′j (d | i) =
⎧⎨
⎩

1

(
∑n

k=1
dk)

1/2 − di

2(
∑n

k=1
dk)

3/2 , i = j,

− di

2(
∑n

k=1
dk)

3/2 , otherwise,

and thus

g′j (ξ | i) =
{

1
‖w‖1 − wi

2‖w‖21
, i = j,

− wi

2‖w‖21
, otherwise.

Next, we substitute these partial derivatives and the degree covari-
ances from Section 3.1 into the approximation

var (ŵi) ≈
n∑

j=1

n∑
k=1

g′j (ξ | i) g′k (ξ | i) cov (dj , dk) .

When evaluating this expression, it will be helpful to consider four
distinct cases: (a) i = j = k, (b) i �= j = k, (c) i = j or i = k with
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j �= k, and (d) i �= j, k with j �= k. Partitioning the summation
according to these cases yields

var (ŵi) ≈
(

1
‖w‖1 − wi

2‖w‖21

)2 (
wi ‖w‖1 − w2

i ‖w‖22
)

+
∑
j �=i

(
wj

2‖w‖21

)2 (
wj ‖w‖1 − w2

j ‖w‖22
)

− 2
∑
j �=i

(
1

‖w‖1 − wk

2‖w‖21

)(
wi

2‖w‖21

) (
wiwj − w2

iw
2
j

)
+
∑
j �=i

∑
k �=i,j

(
wjwk

4‖w‖41

) (
wjwk − w2

jw
2
k

)
.

Simplifying this expression, we obtain

var (ŵi) ≈ wi

‖w‖1
− w2

i

(‖w‖22 + 1
)

‖w‖21
+ f1 (w)− f2 (w) , (10)

where

f1 (w) =
‖w‖33

(
1 + 4w2

i

)− 4 ‖w‖22
(
wi − w3

i

)
+ 4w3

i − 4w5
i

4 ‖w‖31
,

f2 (w) =
‖w‖22 ‖w‖44 − ‖w‖42 + ‖w‖63 + ‖w‖44 − ‖w‖66

4 ‖w‖41
.

Since this expression tends to zero with increasing ‖w‖1, we have
that the MSE of ŵi approximately tends to zero as n → ∞.

A simpler approximation can be obtained by noting that as ‖w‖1
grows large, f1 (w) and f2 (w) quickly become negligible. Ignoring
these terms, we obtain

var (ŵi) ≈ wi

‖w‖1
− w2

i

(‖w‖22 + 1
)

‖w‖21
, (11)

which is quite close to the variance obtained for the simplified
estimator given in (5), differing only by 1/ ‖w‖21. As we will
see in the next section, empirical results suggest that all three
variance expressions—(5), (10), and (11)—can be used as effective
approximations of the true estimator variance.

4. EMPIRICAL RESULTS

We conclude by investigating the previously stated moment approx-
imations through an empirical example. Let n = 1000, and let w
be a n-length vector whose elements are generated by independent
draws from the uniform distribution over (0, 0.2). Thus, we have
E (wi) = 0.1 and E

(‖w‖1
)
= 100. Given w fixed, we generated

1000 graphs according to the Chung-Lu model G (n,w), and for
each graph, we computed the set of Chung-Lu parameter estimates
according to (1), given its observed degree sequence.

Let ŵ1 denote the estimate of the first node weight, which for
this example was w1 = 0.1629. Computed over the 1000 sample
estimates, the empirical mean of ŵ1 was 0.1617, and the empirical
variance was 0.001630. By comparison, the approximate variances
as computed by (10) and (11) were 0.001627 and 0.001628. These
values are close the variance of the simplified estimator given in (5),
which is equal to 0.001631.

In addition to having mean and variance consistent with our
approximations, the sample estimates appear to follow CLT-like be-
havior. Figure 1 shows the empirical distribution of ŵ1, obtained by
constructing a kernel density estimate using the estimates computed
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Fig. 1. Kernel density estimate and normal approximation for
distribution of ŵ1.

for each of the 1000 generated graphs and a Gaussian kernel with
a bandwidth of σ = 0.01. Also plotted is a normal distribution
with mean 0.1629 and variance 0.0016. From the figure, we see
that the normal distribution appears to provide a good fit to the
empirical distribution. This assertion is supported by noting that the
skewness and the excess kurtosis of the samples are low (0.2328 and
0.0398, respectively), as is the Kullback-Leibler divergence between
the empirical and normal distributions (with a value of 0.0076).

5. SUMMARY

In this paper, we explored statistical properties of a standard estima-
tor used for determining the weight parameter of Chung-Lu random
graph models. In addition to developing a central limit theory for a
simplified version of the estimator, we derived approximations for
moments of the general estimator using the delta method. We also
illustrated through an empirical example that these approximations
can be effective in practice.
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