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ABSTRACT

In this paper, we consider precise parameter estimation of

multicomponent polynomial-phase signals (mc-PPSs). Two

estimation refinement methods are proposed and both are ini-

tialized by coarse estimates provided by any technique for

the mc-PPS estimation. The first method refines components,

one by one, by estimating them once again, now from the re-

ceived signal with all the components suppressed, except for

the considered one. In the second method, the recently pro-

posed estimation refinement technique for single PPS based

on the filtering and phase unwrapping has been extended to

the mc-PPSs. The first method approaches the Cramér-Rao

lower bound (CRLB) within a few dBs, whereas the second

one practically reaches the CRLB. Both methods are charac-

terized by significantly lower complexity than computation-

ally intensive nonlinear least squares (NLS) methods. Simu-

lations confirm the effectiveness of the proposed methods.

Index Terms— Polynomial phase, parameter estimation,

estimation refinement, phase unwrapping.

1. INTRODUCTION

Parameter estimation of polynomial-phase signals (PPSs)

is an important issue since linear and nonlinear frequency-

modulated (FM) signals are found in several practical applica-

tions. For example, in synthetic aperture radar (SAR), inverse

SAR (ISAR), Doppler radar and sonar imaging, the returns

are FM signals [1]. Applications also include biomedicine,

seismology, geophysics. The PPS estimation has been ex-

tensively dealt with in the literature [1–4]. A very popu-

lar approach is based on the high-order ambiguity function

(HAF) [2, 3]. The performance of the HAF, however, is dete-

riorated in the presence of multicomponent PPSs (mc-PPSs).

Due to nonlinear structure of the HAF, the components inter-

act with each other giving rise to cross-terms that can mask

the desired peaks in the HAF spectrum. In addition, the HAF

may fail in identifying components with the same highest

order phase coefficients [1].

Barbarossa and co-workers introduced the product high-

order ambiguity function (PHAF) [1] that can resolve the

components of mc-PPSs and effectively suppress the noise.

A fine search algorithm for the PHAF-based mc-PPS param-

eter estimation is proposed in [5], where the peak frequency

in the PHAF spectrum is estimated very accurately, without

spectrum oversampling. The PHAF-based estimation is bi-

ased and the error-propagation effect makes the estimation

of lower order phase coefficients and amplitudes less accu-

rate [1]. A nonlinear least squares (NLS) approach can be

used to improve the estimation accuracy [4, 6]. In [4], the

Nelder–Mead simplex algorithm (NMSA) is used for mini-

mizing the nonlinear cost function initialized by parameter

estimates provided by the PHAF. The method, however, suf-

fers from significant computational complexity that limits its

practical applicability. Parameter estimation of product of an

FM signal and PPS, found, for example, in radar and sonar

applications that involve moving targets with vibrating or

rotating parts, is considered in [7] and [8].

In this paper, we propose two methods for the fine pa-

rameter estimation of the mc-PPSs. In both methods, the

PHAF-based method is used to provide initial (coarse) esti-

mates [5], although any method for the mc-PPS estimation

can be used. In the first method, we repeat the estimation of

components, one at a time, but now from the received sig-

nal where all components, except for the one to be estimated,

have been removed. An extension of the refinement method

for single PPS estimation [9] to the mc-PPSs constitutes the

second method. The former method offers significant im-

provement over the initial estimate, approaching the Cramér-

Rao lower bound (CRLB) within a few dBs, whereas the latter

one practically reaches the CRLB. Both methods have signif-

icantly lower complexity than the NMSA-based method pro-

posed in [4].

Paper is organized as follows. Section 2 describes the mc-

PPS estimation. The proposed estimation refinement methods

are presented in Section 3. Simulations and conclusions are

given in sections 4 and 5, respectively.

2. MULTICOMPONENT PPS ESTIMATION

The mc-PPS x(n), n = 0, · · · , N−1, has the following form:

x(n) =
K∑

k=1

Ake
j2π

∑P
p=0 αk,p(nΔ)p , (1)
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where Ak and αk,p, p = 0, · · · , P, are the amplitude and

polynomial-phase coefficients of the kth component, respec-

tively, P the polynomial order, K the number of components,

Δ the sampling interval and N the signal length. We will

assume that x(n) is embedded in zero-mean white Guassian

noise ε(n) with variance σ2, i.e., we consider signal

y(n) = x(n) + ε(n). (2)

Assuming that the number of components K is known [1,

3], we can estimate the phase coefficients of each component

starting from the strongest one as follows [3]:

Step 1. Set k = 1 and yf (n) = y(n).

Step 2. Estimate the amplitude Ak and phase coefficients

αk,p, p = 0, 1, · · · , P , of the strongest component

from the PHAF of yf (n). The obtained estimations

are denoted as Âk and α̂k,p. Filter out the estimated

component as

yf (n) = yf (n)− Âke
j2π

∑P
p=0 α̂k,p(nΔ)p . (3)

Step 3. Set k = k + 1. If k > K exit; otherwise, go to Step

2.

Note that, instead of the HAF used in [3], we will use

the PHAF since it significantly outperforms the HAF in the

presence of mc-PPSs [1]. We can also use the fine search

algorithm proposed in [5] to improve the estimation accuracy

without adding significant computational burden. The PHAF-

based estimation procedure is described in detail in [5] and is

not given here due to limited page count.

Two methods for estimation refinement are described in

the following section. Both methods use initial parameter es-

timates obtained by the above described algorithm.

3. ESTIMATION REFINEMENT

3.1. Method I

In order to refine the estimation of the kth component, k =
1, 2, · · · ,K, we propose to estimate it once more, now from

the received signal from which all the other components have

been removed. We start from the strongest component. The

algorithm is given below.

Step 1. Set k = 1 and initial refined estimates as Âr
k =

Âk and α̂r
k,p = α̂k,p for k = 1, 2, · · · ,K and p =

0, 1, · · · , P .

Step 2. Update the refined estimates of the kth component,

Âr
k and α̂r

k,p, p = 0, 1, · · · , P from the PHAF of

yk(n) = y(n)−
K∑

q=1,q �=k

Âr
qe

j2π
∑P

p=0 α̂r
q,p(nΔ)p . (4)

Step 3. Set k = k + 1. If k > K exit; otherwise, go to Step

2.

In step 2, we update the refined estimation of the kth com-

ponent using yk(n) given in (4). Note that in yk(n), all the

components except for the kth one, have been filtered out.

Ideally, if these components have been estimated without er-

ror, yk(n) will contain the kth component only plus noise. In

reality, however, this is not the case. Nevertheless, the influ-

ence of other components on the estimation of the kth one has

been significantly reduced as it will be shown in simulations.

Note also that the initial refined estimates (step 1) equal

the estimates obtained by the PHAF-based procedure (sec-

tion 2). After refining the kth component, its refined estimate

is used in the sum in (4), rather than the initial one, in the

estimation of the following components.

3.2. Method II

The mc-PPS estimation can be refined by extending the single

PPS refinement method proposed in [9] (we will refer to it as

the O’Shea’s method) to the mc-PPS case. We propose an

extension of the O’Shea’s method as follows:

Step 1. Set k = 1 and initial refined estimates as Âr
k =

Âk and α̂r
k,p = α̂k,p for k = 1, 2, · · · ,K and p =

0, 1, · · · , P .

Step 2. Update the refined estimates of the kth component,

Âr
k and α̂r

k,p, p = 0, 1, · · · , P from

yk(n) = y(n)−
K∑

q=1,q �=k

Âr
qe

j2π
∑P

p=0 α̂r
q,p(nΔ)p (5)

using the following steps:

Step 2a. De-chirp yk(n) as

z(n) = yk(n)e−j2π
∑P

p=1 α̂r
k,p(nΔ)p . (6)

Step 2b. Low-pass filter z(n) with a moving average

(MA) filter and decimate:

z0(m) =
1

M

mM∑
n=(m−1)M+1

z(n), m = 1, · · · , Q, (7)

where Q = �N/M� and M is the MA filter

length.

Step 2c. Create a vector V of unwrapped angle of

z0, i.e., V = unwrap(angle(z0)). Vector V is

a polynomial in noise with unknown phase co-

efficients a = [αk,0, δαk,1, · · · , δαk,P ], where

δαk,p = αk,p − α̂r
k,p, p = 1, 2, · · · , P . Vector a

can be estimated using

â = [α̂k,0, δ̂αk,1, · · · , δ̂αk,P ] = (GTG)−1GTV,
(8)
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where

G =

⎡
⎢⎢⎣

1 Δ · · · ΔP

1 2Δ · · · (2Δ)P

· · · · · · · · · · · ·
1 QΔ · · · (QΔ)P

⎤
⎥⎥⎦ . (9)

Step 2d. Update α̂r
k,p as follows:

α̂r
k,p = α̂r

k,p +
δ̂αk,p

Mk
, p = 1, 2, · · · , P (10)

α̂r
k,0 = α̂k,0. (11)

Step 3. Set k = k + 1. If k > K exit; otherwise, go to Step

2.

In step 2a, the kth component will be well localized

around the DC component of z(n) assuming that the initial

estimation has been performed adequately. In the O’Shea’s

method, the initial parameter estimates can be significantly

less accurate than for Newton algorithms [9]. In step 2b,

the low-pass filtering is used to increase the signal-to-noise

ratio (SNR), thus enabling the use of phase unwrapping and

linear least-squares estimation techniques [10]. Since, in

general, the polynomial curve fitting in (8) and (9) is ill-

conditioned if the signal length or the polynomial order are

very large [9, Section IIA], i.e., the process is vulnerable to

round-off errors, the decimation takes place in (7).

4. SIMULATIONS

The proposed methods are evaluated for a three-component

PPS signal embedded in white Gaussian noise with zero mean

and variance σ2. All the signal components are third-order

PPSs with phase coefficients given in Table 1. Without loss

of generality, we adopted the zero initial phase for all the three

components. Components I, II and III are characterized by the

SNR of 18 dB, 16 dB and 14 dB, respectively. The SNR is

defined by SNR = 20 log10(Ak/σ), where Ak is the ampli-

tude of the kth component, k = 1, 2, 3. In addition, the signal

length is N = 512 and Δ = 1/N .

For both proposed refinement methods, the initial (coarse)

estimation is performed using the PHAF [5, Section 2]. The

PHAF peaks are maximized with the dichotomous approach

[5, Section 3]. Thus the estimation accuracy cannot be further

improved using the PHAF domain only. In our simulations,

we used the same setup in the PHAF calculation as in the

simulations section in [5]. In the second proposed method,

the MA filter length is M = 5.

Figure 1 presents the mean squared error (MSE) curves

versus noise variance obtained in the estimation of each coef-

ficient from Table 1. The noise variance is varied from 2 to

20 in steps of 2. The MSE is calculated according to

MSE = 10 log10
1

Nsim

∑Nsim

n=1

(
α̂n
k,p − αk,p

)2
, (12)

Table 1. Phase coefficients of considered three-component PPS

Component I Component II Component III

a1,1 = π2

37N a2,1 = π2

53N a3,1 = −π2

47N

a1,2 = −π2

29N a2,2 = −π2

67N a3,2 = π2

27N

a1,3 = π2

41N a2,3 = −π2

33N a3,3 = π2

85N

where α̂n
k,p is the estimation of the pth coefficient (p = 1, 2, 3)

of the kth component in the nth simulation and Nsim is the

number of Monte Carlo simulations. In our simulations,

Nsim = 300. The left three subplots correspond to the

estimation of Component I, the middle three subplots to

Component II and the right three subplots to the estimation

of Component III.

The initial PHAF estimation is depicted by dashed line

with squares, the Method I refinement by dotted line, the

Method II refinement by solid line with circles, the CRLB

by dashdot line. We also added the results obtained by the

NMSA-based method [4] (dashed line with points).

Clearly, the proposed refinement methods provide im-

provement over the initial estimate. Method I approaches

the CRLB for all the considered coefficients with the bias of

a couple of dBs. On the other hand, Method II practically

reaches the CRLB, which is also the case for the NMSA-

based method. However, the complexity of the NMSA-based

method significantly exceeds that of the other two methods

since a 9-dimensional search is performed. In our simula-

tions, the execution time of the NMSA exceeded the pro-

posed methods’ time approximately 30 times. The NMSA is

implemented in Matlab by the fminsearch function.

Figure 1 also shows that the PHAF-based estimates are

sufficiently accurate in the sense that Method II reaches the

CRLB with such initial estimates. In other words, more ac-

curate initial estimates would not yield any improvement in

accuracy of Method II. Finally, note that the difference be-

tween the initial and refined estimates of the third (weakest)

component is smaller than with the other two components.

This is due to removing the strongest two components in (3)

prior to estimating the third one.

5. CONCLUSIONS

Coefficients of a mc-PPS can be estimated very accurately

without using time-consuming NLS-based methods. To that

end, we proposed two methods. In the first method, the esti-

mation of each component is refined using the received signal

from which all other components have been filtered out. In

the second method, filtering and phase unwrapping approach

was used. Filtering increases the SNR which enables the use

of the phase unwrapping approach which reaches the CRLB

at higher SNRs. The execution time is substantially reduced

compared to the NMSA-based method without degrading the

estimation accuracy.
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Fig. 1. MSE versus noise variance σ2. Left column: Component I estimation MSE; Middle column: Component II estimation MSE; Right
column: Component III estimation MSE.

Future research will include the analysis of statistical

properties of the proposed estimators and how close the ini-

tial estimates need to be.

6. REFERENCES

[1] Sergio Barbarossa, Anna Scaglione, and Georgios B. Gian-

nakis, “Product high-order ambiguity function for multicom-

ponent polynomial phase signal modeling,” IEEE Transactions
on Signal Processing, vol. 46, no. 3, pp. 691–708, March 1998.

[2] Shimon Peleg and Benjamin Friedlander, “The discrete

polynomial-phase transform,” IEEE Transactions on Signal
Processing, vol. 43, no. 8, pp. 1901–1914, August 1995.

[3] Shimon Peleg and Benjamin Friedlander, “Multicomponent

signal analysis using the polynomial-phase transform,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 32, no.

1, pp. 378–387, January 1996.

[4] Duc Son Pham and Abdelhak M. Zoubir, “Analysis of multi-

component polynomial phase signals,” IEEE Transactions on
Signal Processing, vol. 55, no. 1, pp. 56–65, January 2007.
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