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ABSTRACT
Semiparametric detection consists of combining the statisti-
cal optimality of a parametric test to the robustness regarding
the data of a nonparametric test. This approach is specially
interesting in presence of statistical hypotheses depending on
unknown probability distributions. The proposed semipara-
metric approach consists of splitting the measurement vector
into two parts such that the first part has a known statistical
distribution. Then, it is proposed to calculate a likelihood ra-
tio test based both on the first part and the detection result of
a nonparametric test applied to the second part. The statistical
performance of the proposed test is analytically established.

Index Terms— Semiparametric detection, Likelihood ra-
tio test, Nonparametric test, Support vector machine.

1. INTRODUCTION

The nature of statistical hypothesis testing depends upon
what is known about the data used in the test. If the probability
of the data sample conditioned upon the hypothesis is known
to within a finite set of parameters then parametric hypothesis
tests can be utilized [1]. However, if the aforementioned pro-
bability is unknown, or depends on a too large number of unk-
nown parameters, then nonparametric tests must be used [2].
In general, with all other things being equal, the parametric
tests perform better than the nonparametric tests due to the
additional information imparted by the probability distribu-
tion but nonparametric tests have robust performance due to
the rather mild assumptions made regarding the data [3].

In practice, there is a considerable interest to propose
some tests, namely the semiparametric tests, which com-
bine the advantages of each approach. Previous works [4, 5]
have already studied such an approach. There are mainly two
trends in the literature. The first one [4, 6] consists of esti-
mating the nonparametric part of the model in a first step and
to design a test in a second step based on this estimate. The
second one [5] consists of combining two statistical tests, a
parametric one and a nonparametric one, obtained from two
different sources of data. This is also known as a fusion test.
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This paper proposes a new approach. Often, a mea-
surement vector comes from a measurement model which
contains both a parametric part and a nonparametric part.
Hence, it is proposed to split the measurement vector into two
subvectors such that each subvector is either associated to a
pure parametric model or a pure nonparametric one. The non-
parametric subvector is then processed by a nonparamatric
test in order to produce a binary decision value whose sta-
tistical distribution is well estimated. This nonparametric de-
cision value is then combined with the parametric subvector
to produce the final decision. This combination is parametric
in essence since it is based on the well-known likelihood ra-
tio. From this way, the nonparametric component endows the
semiparametric test with the flexibility necessary to capture
complex regularities in the data and the parametric part of the
semiparametric test provides a robust description of some of
the patterns present in the data to ensure a constraint of the
false alarm probability.

The paper is organized as follows. Section 2 presents the
detection problem and the classical approaches that can be
used to solve it. It is then proposed to solve this detection pro-
blem by the semiparametric test described in Section 3. Sec-
tion 4 studies the performances of the proposed test. Section 5
concludes this paper.

2. DETECTION PROBLEM

Let z = θ + ξ be the random measurement vector of
R

n where ξ is a random vector with the Gaussian distribution
N (0, σ2In) where σ is known and In is the identity matrix.
The goal is to decide whether θ is zero or not. If not zero,
the mean value θ is assumed to approximatively belong to a
subspace of Rn with a small dimension, i.e.,

z = Px+ Qy + ξ, (1)

where the matrices P, of size n× p, and Q, of size n× q, are
known such that p < q. The space spanned by P is supposed
to contain the major part of θ and Q spans the complemen-
tary subspace of P in R

n. This complementary subspace can
contain some traces of θ which are not well modeled. Such
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a model can occur for example in [7] where the signal of in-
terest belongs to a subspace of Rn. For simplicity, the values
of the vectors x ∈ R

p and y ∈ R
q depend on the two hypo-

theses :

H0 :
{
x = 0 , y = 0

}
,

H1 :
{
x = x0 , y ∼ P1

}
(2)

where x0 is known and P1 is an unknown probability dis-
tribution. Hence, under H1, the distribution of the random
vector y ∈ R

q is partially unknown. Without any loss of ge-
nerality, it is assumed that rank (P) = p, rank (Q) = q and
rank ([P Q]) = p+q = n. The column vectors of P and those
of Q form a family of orthonormal vectors. It is supposed that
a learning data set

S =
{
(z1, �1), (z

2, �2), . . . , (z
N , �N)

}
of N independent and identically distributed measurements
vectors zi, where �i ∈ {0, 1} is the label of zi, is available.
The detection problem (2) is difficult because hypothesis H1

is composite : the vector y is unknown. A statistical test is a
function of z into {0, 1} which takes the value i if hypothe-
sis Hi is accepted. Two classical tests are possible to solve
this problem : a parametric approach, which ignores S, and a
nonparametric approach, which exploits S.

2.1. Parametric detection approach

Using a parametric detection approach consists of assu-
ming that y is an unknown deterministic vector under H1.
This yield to the parametric detection problem

H0 :
{
z ∼ N (0, σ2In)

}
,

H1 :
{
z ∼ N (θ, σ2In), θ �= 0

}
(3)

where θ = Px0 + Qy is an unknown non-zero vector. Hence
the goal is to detect any non-zero deviation θ in the expecta-
tion of z. The optimal test δp(z) is given in [8] :

δp(z) =

{
0 if Λp(z)

def.
= ‖z‖2

σ2 ≤ λp,
1 else,

(4)

where ‖.‖ is the Euclidean norm and λp is a threshold to sa-
tisfy a false alarm probability α ∈ [0, 1], i.e., Pr0(Λp(z) ≥
λp) = α where Prk(A) stands for the probability of A when
z is distributed according to Hk. It is well known that the
performance of δp(z), especially its probability of correct de-
tection, depends only on the norm of θ, which may be very
restrictive.

2.2. Nonparametric detection approach

Using a nonparametric detection approach consists of as-
suming that y is an unknown random vector whose distri-
bution can be learned from S. To simplify the presentation,

it is assumed that the problem is solved by using a Support
Vector Machines (SVM) detector. The SVM detector has the
form [9] :

δn(z) =

{
0 if Λn(z) ≤ λn,
1 else,

(5)

where the decision function has the form

Λn(z) =

N∑
i=1

γi K(zi, z). (6)

Here, K(zi, z) is the kernel function using a similarity mea-
sure between the observations z(i) and z. The weighted coef-
ficients γi are obtained by minimizing a prefixed cost based
on the learning set S (see details in [9]). The threshold λn is
automatically adjusted by the minimization step. In practice,
it is very difficult to fix it in order to respect a prescribed false
alarm probability.

These two approaches have their own advantages but, ove-
rall, their main disadavantages. The parametric detector has
well controlled error probabilities but there is a loss of op-
timality since the random nature of y is ignored. The non-
parametric exploits the random nature of y but its statistical
performances are not well controlled. Hence, it is proposed
to combine these two approaches in a unified framework to
obtain a better detector, called the semiparametric detector.

3. SEMIPARAMETRIC DETECTION

The principle of the semiparametric test can be described
as follows. The measurement vector is assumed to be split
into two statistically independent subvectors. The first sub-
vector is processed with a nonparametric detector of the form
(5) which produces a decision value 0 or 1. The first subvec-
tor together with the decision value of the nonparametric test
form a couple whose distribution is known under each hypo-
thesis. The likelihood ratio test is calculated from this couple
of random variables. This yields to the semiparametric test.

3.1. Statement of the semiparametric detection problem

The measurement vector can be decomposed into two
subvectors zp and zq defined by

zp
def.
= P�z = x+ ξp, (7)

zq
def.
= Q�z = y + ξq (8)

where P� (resp. Q�) is the transpose of P (resp. Q), ξp ∼
N (0, σ2Ip) and ξq ∼ N (0, σ2Iq). It is obvious that kno-
wing the vector z is statistically equivalent to know the couple
(zp, zq). From this decomposition, zp has a well-defined dis-
tribution under both H0 and H1. Hence it can be exploited to
design a parametric test. On the contrary, the distribution of
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zq is badly characterized under both hypothesis, hence it must
be exploited by a nonparametric test. we note that zp and zq
are statistically independent since the noise ξ is Gaussian dis-
tributed with a diagonal covariance matrix.

Let δn(zq) the SVM detector defined by (5)-(6) be based
on the subvector zq instead of the complete vector z. This
SVM detector is learned from the restricted data set

Sq =
{
(z1

q , �1), (z
2
q , �2), . . . , (z

N
q , �N)

}
where zi

q = Q�zi. The false alarm probability of δn(zq)
is α̃=Pr0(δn(zq)=1) and its probability of correct detection
is β̃=Pr1(δn(zq)=1). These two probabilities are assumed
to be known (or well estimated). Consequently, under H0,
the random variable δn(zq) follows the Bernoulli distribution
B(α̃) : it takes the value 1 with probability α̃ and the value 0
with probability 1−α̃. UnderH1, the random variable δn(zq)
follows the Bernoulli distribution B(β̃). The proposed semi-
parametric approach consist of solving the decision problem

H0 :

{
zp ∼ N (0, σ2Ip), δn(zq) ∼ B(α̃)

}
,

H1 :

{
zp ∼ N (x0, σ

2Ip), δn(zq) ∼ B(β̃)
}

(9)

by using the famous likelihood ratio test. This test is optimal
for testing H0 and H1 since these hypotheses whose statis-
tical distributions are well known are simple [1]. Obviously,
the problem (9) is not equivalent to the initial decision pro-
blem (3) : the statistical information in vector zq is conden-
sed, and certainly reduced, by the nonparametric test δn(zq).

3.2. Semiparametric test

The decision problem (9) can be solved by the well-
known log-likelihood ratio test given by

δs(z) =

{
0 if Λs(z) ≤ λs,
1 else,

(10)

with the decision function Λs(z) :

Λs(z)=Λs(zp, δn(zq))= log
fx0

(zp) α̃
δn(zq) (1 − α̃)1−δn(zq)

f0(zp) β̃δn(zq) (1− β̃)1−δn(zq)

where fx(zp) is the probability density function of the Gaus-
sian distribution N (x, σ2Ip). Calculation yields to

Λs=Λs(zp, δn(zq))=	

(
x�0zp

σ‖x0‖ +
γ

	
δn(zq) +

ω

	

)
(11)

where γ = log

(
β̃(1− α̃)

α̃(1− β̃)

)
and ω = log

1− α̃

1− β̃

and 	2=‖x0‖2/σ2 is the Parametric Signal-to-Noise Ratio
(PSNR) associated to the parametric part of the measurement

model. It must be noted that the test (10) can be simplified
as follows : it is sufficient to compare the decision function
Λ∗
s(z) to a threshold λ∗

s instead of comparing Λs(z) to λs,
where Λ∗

s(z) is given by :

Λ∗
s(z)=Λ∗

s(zp, δn(zq))=
x�0zp

‖x0‖σ +
γ

	
δn(zq). (12)

From (12), it appears that the parameter γ measures the glo-
bal performances of the nonparametric test δn(zq). When γ
is large, it can seriously modify the performance of the se-
miparametric test. Hence, the ratio γ/	 automatically quanti-
fies the tradeoff between the parametric part x�0zp/(‖x0‖σ)
of the test and the nonparametric decision value δn(zq). Fur-
thermore, from (12), it is straightforward to obtain

αs
def.
=Pr0(Λ

∗
s≥λ∗

s)=Q(λ∗
s)(1−α̃)+Q

(
λ∗
s−

γ

	

)
α̃, (13)

βs
def.
=Pr1(Λ

∗
s≥λ∗

s)=Q(λ∗
s−	)(1−β̃)+Q

(
λ∗
s−

γ

	
−	

)
β̃ (14)

where Q(x) =
1√
2π

∫ +∞

x

exp(−u2

2
)du. (15)

The theoretical calculation of the threshold λ∗
s to satisfy a

prescribed level α is not an easy task but its numerical com-
putation is very easy. It permits to obtain a good control of the
false alarm probability αs.

3.3. Robustness to the learning data set

Obviously, in practice, the performance indices αs and βs

of the semiparametric test are some random variables α̂s and
β̂s which depend on the learning data set Sq through α̃ and β̃.
In fact, the “true” probabilities α̃ and β̃ are unknown and the
only available values are the estimate α̂=α̂(δn) and β̂=β̂(δn)
given in [3] by :

α̂=
1

N0

N∑
i=1,
�i=0

1{δn(zi
q)=1} and β̂=

1

N1

N∑
i=1,
�i=1

1{δn(zi
q)=1}

whereNk is the number of samples zi
q in Sq with label �i = k

and 1{·} is the indicator function. It is well known that α̃ and

β̃ can be well approximated by α̂(δn) and β̂(δn) provided
that N0 and N1 are sufficiently large [3]. In fact, given two
constants η0, η1 > 0, there exist ε0 = ε0(N0, η0) and ε1 =
ε1(N1, η1) such that :

Pr
(
|α̂− α̃| > ε0(N0, η0)

)
≤ η0 (16)

and
Pr
(
|β̂ − β̃| > ε1(N1, η1)

)
≤ η1. (17)

The values η0 and η1 decay exponentially fast as function of
increasing ε0 and ε1 (see details in [3]).
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Using the “Probably Approximately Correct” (PAC)
bounds (16)-(17) together with (13)-(14) immediately yields
to the following result : given a constant η > 0, there exists
ε = ε(N0, N1, η) such that

Pr
(
|αs − α̂s| > ε

)
≤ η and Pr

(
|βs − β̂s| > ε

)
≤ η. (18)

Hence, the theoretical, but unknown, Receiver Operating
Curve (ROC) curve of the semiparametric test, which corres-
ponds to the plot of βs against αs (see details in [2]), can be
bounded, with a high probability 1− η, by a lower and upper
bound depending essentially on the estimates α̂s and β̂s plus
or minus a constant ε depending on the sizesN0 andN1 of the
learning data set. If the learning data set is sufficiently large,
the statistical performances of the semiparametric test can be
well characterized.

4. EXPERIMENT RESULTS

To illustrate the relevance of the proposed approach, nu-
merical simulations were conducted for the measurement mo-
del (1) where n = 3, p = 1, q = 2,

P =

⎛⎝ 0
0
1

⎞⎠ , Q =

⎛⎝ 1 0
0 1
0 0

⎞⎠ ,

σ = 3, x0 = 5 and y = (y1, y2)
� such that y1, resp. y2, fol-

lows the exponential distribution with expectation 2, resp. 1.
For evaluation purpose, the performance of the parametric test
δp(z) in (4), the nonparametric test δn(z) in (5) with Gaus-
sian kernel and the proposed semiparametric test δs(z) in (10)
are compared. The false alarm rate and the correct detection
rate of each test are estimated from 105 random samples z.
The learning data base is composed of 100 random samples
zi with label �i=0 and 100 random samples with label �i=1.
For the semiparametric test, γ is obtained from the values α̃
and β̃ achieved by the nonparametric test δn(zq), applied to
the restricted subvector zq , when its threshold is zero.
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Fig. 1. The correct detection rate as a function of the false
alarm rate for the three tests δs(z), δn(z) and δp(z).

The results of the simulation are plotted on Fig. 1. This
figure shows that the nonparametric test δn(z) and the para-
metric test δp(z) have a comparable level of performances.
They are clearly outperformed by the proposed semiparame-
tric test δs(z). The theoretical correct detection probability βs

of the semiparametric test is not plotted on the figure because
it coincides with the proposed empirical curve. Contrary to
the nonparametric test, the false alarm rate of the semipara-
metric test can be easily controlled from (13).

5. CONCLUSION

This paper proposes a semiparametric test based on a like-
lihood ratio test dependent of a nonparametric decision value.
Numerical simulations show that this test outperforms both a
pure parametric test and a pure nonparametric test.
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