
THE BAHADUR EFFICIENCY FOR ENERGY DETECTION OF STATIONARY
GAUSSIAN PROCESSES

Yuni Lee and Youngchul Sung†

ABSTRACT

In this paper, the performance and optimization of energy detection of sta-
tionary Gaussian signals are considered. Based on the Bahadur asymptotic
relative efficiency, the performance of energy detection relative to optimal
detection is compared, and the optimal threshold for energy detection is
derived. It is shown that the optimal threshold for optimal detection is not
optimal for energy detection, and an integral equation for determining the
optimal threshold for energy detection is provided. A numerical example
of the detection of equi-correlated signals is provided, and the numerical
result validates our asymptotic analysis in the finite sample regime.

Index Terms- Energy detection, Bahadur efficiency, asymptotic rela-
tive efficiency, error exponent, large deviation principles

1. INTRODUCTION

Due to recent interest in cognitive radio communications, signal
detection has gained a renewed interest. In cognitive radio com-
munications, secondary users should detect the transmission of a
primary user. Since the exact statistics of the primary signal are not
available for secondary users, various robust techniques for the de-
tection of unknown signals have been considered for this problem.
Among them, the energy detection has drawn much interest due to
its simplicity [1–5]. Typically, the detection of an unknown sig-
nal is modeled as the problem of detection of a Gaussian signal
in Gaussian noise, which is a classical problem in detection the-
ory [6]. In this case, the optimal detector is given by a quadratic de-
tector under both Bayesian and Neyman-Pearson frameworks [6,
p.7, p.24], and the simple energy detection is not optimal in gen-
eral. Thus, the analysis of the loss or limitation of energy detec-
tion compared with optimal detection has been performed based
on several measures. For example, Digham et al. derived the ROC
region of the energy detector for various signal models [2], and
Tandra et al. examined the limitation of energy detection with
noise variance uncertainty [3]. In particular, the analysis of per-
formance loss due to signal correlation is a difficult problem since
the exact error probability of the energy detection of a Gaussian
signal with correlation is not available. Thus, several researchers
resort to asymptotic techniques to investigate this problem. For
example, Lim et al. approached the problem by using the Pitman
asymptotic relative efficiency (ARE), or equivalently, generalized
signal-to-noise ratio, for the energy detection under a FIR channel
model [4]. A similar criterion was employed to design a linear-
quadratic fusion rule in a cooperative sensing environment in [7].
While the Pitman ARE provides a meaningful performance com-
parison in the low signal-to-noise ratio (SNR) regime, it is not a
proper metric when the sample SNR is reasonably large. Thus, in
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this paper, we investigate the performance loss of energy detection
based on the Bahadur ARE [8]. The ARE compares the number
of samples for two detectors required to yield the same asymptotic
performance. Under the Bahadur framework, the sample SNR is
fixed, the sample size for the problem increases and the error prob-
ability decreases (typically exponentially), whereas under the Pit-
man framework the sample SNR is renormalized and decreasing
so that the error probability does not decay. Based on large devi-
ations principle (LDP) [9, 10], under the Bayesian framework we
derive the Bahadur ARE for the energy detection by applying the
Gärtner-Ellis theorem to a properly defined mismatched test statis-
tic, as in [11], and obtain the optimal design for energy detection
(i.e., obtain the optimal threshold, the unique design variable for
this problem). We prove that the optimal threshold for optimal de-
tection is not optimal for energy detection and that the Bahadur
ARE is maximized when the threshold is designed to satisfy an
equalizer rule; an integral equation for optimal threshold is pro-
vided.

The remainder of the paper is organized as follows. In Sec-
tion 2, we provide the signal model and the problem formulation.
In Section 3, we briefly review relevant results from LDP, investi-
gate the optimal design for the threshold to maximize the Bahadur
ARE, and provide a numerical example to validate our analysis.
Finally, conclusion is in Section 4.

2. DATA MODEL AND PRELIMINARY

The detection problem that we consider in this paper is given by

H0 : y[i] = w[i], i = 1, . . . n,
H1 : y[i] = θr[i] + w[i], i = 1, . . . n,

(1)

where {r[i]} is a zero-mean stationary Gaussian process, and {w[i]}
is an independent and identically-distributed (i.i.d.) zero-mean
Gaussian noise process, which is assumed to be independent of
{r[i]}. Since {r[i]} is stationary, its autocorrelation sequence and
spectral density function are well defined and given by

γk
Δ
= E{r[i]r[i − k]} and Sr(ω) =

∞∑
k=−∞

γke
−jωk, (2)

respectively. We assume that {r[i]} is scaled to have unit variance,
i.e., γ0 = E{r[i]2} = 1, and the signal amplitude is captured in
the parameter θ. Then, the signal-to-noise ratio (SNR) is given by
SNR = θ2/σ2. The problem (1) can be rewritten in vector form
as

H0 : yn ∼ p0,n = N (0,Σ0),
H1 : yn ∼ p1,n = N (0,Σ1),

(3)

where yn
Δ
= [y[1], y[2], · · · , y[i]]T , rn

Δ
= [r[1], r[2], · · · , r[i]]T ,

wn
Δ
= [w[1], w[2], · · · , w[i]]T , Σ0 = σ2In, and Σ1 = θ2Σr +
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σ2In. Here,Σr is the covariance matrix of {r[i]}, given by [Σr]ij =
γ|i−j|.

It is known that the optimal detector that minimizes the Bayesian
error probability is a log-likelihood ratio (LLR) detector: [6]

Tn,opt
Δ
=

1

n
log

(
p(yn|H1)

p(yn|H0)

)
≥H1

<H0

1

n
log

π0

π1
=: τopt, (4)

where p(yn|Hi) and πi are the probability density and prior prob-
ability for hypothesis i, respectively. Note that for any prior prob-
abilities π0 and π1, the asymptotically optimal threshold is zero!
The test statistic in (4) reduces to yT

n

(
σ2I+ θ2Σr

)−1
Σryn, and

computing this quantity requires O(n2) complexity and also re-
quires the receiver to know Σr , which is not available in many
cases. Thus, when the receiver has limited computation capabil-
ity and little knowledge about signal statistics, an energy detector
based on the energy statistic yT

nyn =
∑n

i=1 y[i]
2 is widely used.

For later development, it is useful to view the energy detector as
an equivalent LLR detector for a mismatched hypothesis detection
problem, given by

H0 : yn ∼ p0,n = N (0,Σ0),

H̃1 : yn ∼ p1,n = N (0, Σ̃1),
(5)

where
Σ0 = σ2

In and Σ̃1 = (σ2 + θ2)In. (6)

Then, the equivalent test statistic is given by

Tn,ed
Δ
=

1

n
log

(
p(yn|H̃1)

p(yn|H0)

)
≥H1

<H0

τed, (7)

which is nothing but the energy statistic. In the following section,
we will examine the asymptotic performance of the energy detec-
tion compared with the optimal detection based on the Bahadur
asymptotic relative efficiency (ARE).

3. THE BAHADUR EFFICIENCY OF ENERGY
DETECTION

For the problem (1), both the optimal and energy detectors have
exponentially decreasing error probability as the sample size n in-
creases. That is, Pδi ∼ Ci exp(−nEi) for some constant Ci,
where Ei is the error exponent of detector δi. The Bahadur ARE
AREδ1,δ2 of detector δ1 with respect to (w.r.t.) detector δ2 is de-
fined as

AREδ1,δ2 =
E1

E2
.

Note that the Bahadur ARE compares the number of samples re-
quired to yield the same (asymptotic) performance for the two de-
tectors (ignoring constants C1 and C2). Thus, when the Bayesian
error exponents of the two detectors are known, we can assess the
loss of the energy detector compared with the optimal detector.
From here on, we will derive the Bahadur ARE of the energy de-
tector w.r.t. the optimal detector based on the large deviations prin-
ciple.

Here, we briefly review the fundamental theorem of LDP, which
explains the asymptotic behavior of a sequence of random vari-
ables. Let {Tn} be a sequence of random variables and let Λ(u)
be its asymptotic cumulant generating function (CGF), i.e.,

Λ(u)
Δ
= lim

n→∞

1

n
logE[exp(nuTn)]. (8)

(Λ(u) can easily be verified to be convex.) Then, the asymptotic
behavior of the tail probability of {Tn} is given by the following
theorem.

Theorem 1 (Gärtner-Ellis [10]) Assume that limit (8) exists as
an extended real number and origin belongs to the interior point
of {u ∈ R : Λ(u) < ∞}. Then the following holds:

(i) For any closed set F ,

lim sup
n→∞

1

n
log P(Tn ∈ F ) ≤ − inf

z∈F
Λ∗(z). (9)

(ii) For any open set G,

lim inf
n→∞

1

n
log P(Tn ∈ G) ≥ − inf

z∈G
Λ∗(z), (10)

where Λ∗(z) refers the Fenchel-Legendre transform of Λ(u), i.e.,

Λ∗(z)
Δ
= sup

u∈R

(zu− Λ(u)). (11)

In addition, we need the following theorem for the asymptotic dis-
tribution of the eigenvalues of a Toeplitz covariance matrix.

Theorem 2 (Toeplitz distribution theorem [12]) Let {λ
(n)
i } be

the eigenvalues of a Toeplitz covariance matrix Σn of a station-
ary process {y[i]} with spectrum Sy(e

jω) having finite lower and
upper bounds. Then,

lim
n→∞

1

n

n∑
i=1

h(λ
(n)
i ) =

1

2π

∫ π

−π

h(Sy(e
jω))dω (12)

for any continuous function h(·).

3.1. The Error Exponents of the Detectors

The Bayesian error exponent of the optimal detector is given by
the Chernoff information: [13],

Eopt = −min
u∈R

1

4π

∫ π

−π

[
log

(
u

S1(ω)
+

1− u

S0(ω)

)

+u log(S1(ω)) + (1− u) log(S0(ω))
]
dω (13)

= −min
u∈R

1

4π

∫ π

−π

[log (1 + (1− u)SNRSr(ω))

+(u− 1) log(1 + SNRSr(ω))
]
dω. (14)

For the energy detector, we use the mismatched statistic Tn,ed in
(8) to obtain the asymptotic CGF under the true underlying distri-
butions.

Λed,0(u)
Δ
= lim

n→∞

1

n
logE[exp(nuTn,ed|H0)]

= lim
n→∞

1

n
log

∣∣∣∣
(
uΣ̃

−1
1 + (1− u)Σ−1

0

)−1
∣∣∣∣
1/2

|Σ̃1|u/2|Σ0|(1−u)/2
(15)

Λed,1(u)
Δ
= lim

n→∞

1

n
logE[exp(nuTn,ed|H1)]

= lim
n→∞

1

n
log

∣∣∣∣
(
Σ−1

1 + uΣ̃
−1
1 − uΣ−1

0

)−1
∣∣∣∣
1/2

|Σ1|1/2|Σ̃1|u/2|Σ0|−u/2

(16)
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Now, by applying Theorem 2, we have

Λ0,ed(u) = −
1

4π

∫ π

−π

[
log

(
u

S̃1(ω)
+

1− u

S0(ω)

)

+u log(S̃1(ω)) + (1− u) log(S0(ω))
]
dω, (17)

Λ1,ed(u) = −
1

4π

∫ π

−π

[
log

(
1

S1(ω)
+

u

S̃1(ω)
−

u

S0(ω)

)

+ log(S1(ω)) + u log(S̃1(ω))− u log(S0(ω))
]
dω,

(18)

where S0(ω) = σ2, S1(ω) = σ2+θ2Sr(ω), and S̃1(ω) = σ2+θ2

are the spectral density functions of the signal under H0, H1, and
H̃1, respectively.

Now, the exponents for the false alarm and miss detection
probabilities of the energy detector are given by Theorem 1. If
the threshold τed for the test statistics Tn,ed satisfies the condition
d
du

Λ0,ed(0) ≤ τed ≤ d
du

Λ1,ed(0), by Theorem 1, we have

lim
n→∞

logPF (n) = lim
n→∞

logPr(Tn,ed > τed|H0)

= − inf
z>τed

Λ∗
0,ed(z) = −Λ∗

0,ed(τed), (19)

lim
n→∞

logPM (n) = lim
n→∞

logPr(Tn,ed < τed|H1)

= − inf
z<τed

Λ∗
1,ed(z) = −Λ∗

1,ed(τed), (20)

whereΛ∗
0,ed(z) and Λ∗

1,ed(z) are the Fenchel-Legendre transforms
of Λ0,ed(u) and Λ1,ed(u), respectively. Since the Bayesian error
probability is given by

PB,ed(n, τed) = π0PF (n) + π1PM (n), (21)

we have

Eed = −min{Λ∗
0,ed(τed),Λ

∗
1,ed(τed)} (22)

Here, one could have used the asymptotically optimal threshold
τopt = 0 for the optimal detector blindly for the energy detec-
tor. However, this choice is not optimal, and the asymptotically
optimal design for the energy detector is given by the following
theorem.

Theorem 3 The maximum error exponent Eed for the energy de-
tector is achieved if the threshold τed satisfy the following equal-
izer rule:

Λ∗
0,ed(τed) = Λ∗

1,ed(τed) = Eed, (23)

and the values of optimal τed and Eed can be obtained by solving
the two following equations simultaneously:

τed =
d

du
Λ0,ed(u0) =

d

du
Λ1,ed(u1), (24)

Eed = Λ0,ed(u0) + (u− u0)
d

du
Λ0,ed(u0)

∣∣∣∣
u=0

= Λ1,ed(u1) + (u− u1)
d

du
Λ1,ed(u1)

∣∣∣∣
u=0

. (25)

Proof: See [14].
Fig. 1 shows the optimal design with the two asymptotic CGFs.
Since the Fenchel-Legendre transform is defined asΛ∗

i (z) := supu∈R

(zu− Λi(u)), the error exponent is the y-intercept of the tangent

Λ0,ed(u)

Λ1,ed(u)

u

Eed

Slope: τed

Fig. 1. The asymptotically optimal design for energy detection

line ofΛi(u)with slope τed. Hence, the maximum ofmin{Λ∗
0,ed(τed),

Λ∗
1,ed(τed)} occurs when the two tangent lines of Λ0,ed and Λ1,ed

coincide! Thus, for optimal performance some bias on the thresh-
old should be applied. If we simply use the threshold τopt = 0,
then the error exponent is given by

E′
ed = −min{Λ∗

0,ed(0),Λ
∗
1,ed(0)} = −Λ∗

1,ed(0),

= −min
u

Λ1,ed(u) ≤ Eed, (26)

since Λ1,ed(u) ≥ Λ0,ed(u+ 1), which was shown in [14].

3.2. Example: Equi-correlated Signals

Based on the obtained error exponent for the energy detection, the
Bahadur efficiency can be computed numerically. However, in
certain cases including the equi-correlation signal model, closed-
form expressions can be obtained. In this subsection, we provide
the closed-form ARE for the energy detection in the case of the
equi-correlated signal model which was widely used to capture the
signal correlation in a simple way and to provides an insight into
the energy detection of correlated signals [15].The equi-correlation
signal model has the correlation coefficients, given by

γk = E{r[i]r[i− k]} =

{
1 if k = 0
ρ if k �= 0

, (27)

where ρ is the correlation between any two samples. Here, the
spectral density of the signal is given by

Sr(ω) = 1− ρ+ ρδ(ω). (28)

Based on the result
∫ π

−π
log(a+bδ(ω))dω = 2π log a for a, b > 0

[16], the error exponent for the optimal detection with zero thresh-
old is given by

Eopt =
1

2
log

⎛
⎜⎜⎝

log

(
σ2+θ2(1−ρ)

σ2

)
θ2(1 − ρ)/σ2

⎞
⎟⎟⎠ −

1

2

log

(
σ2+θ2(1−ρ)

σ2

)
θ2(1 − ρ)/σ2

+
1

2
.

(29)

and the asymptotic CGFs for the energy detection are given by

Λ0,ed(u) = −
1

2
log

(
σ2 + θ2

σ2
− u

θ2

σ2

)

−
u− 1

2
log

(
θ2 + σ2

σ2

)
, u <

σ2 + θ2

θ2
, (30)

Λ1,ed(u) = −
1

2
log

(
1− u

θ2(σ2 + θ2(1− ρ))

σ2(σ2 + θ2)

)

−
u

2
log

(
θ2 + σ2

σ2

)
, u ≤ 0. (31)
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Fig. 2. Bahadur ARE of energy detector with trivial threshold

Now, by Theorem 3, we have

τed =
1

2

σ2 + θ2(1 − ρ)

(1 − ρ)(σ2 + θ2)
log

(
σ2 + θ2(1 − ρ)

σ2

)
−

1

2
log

(
σ2 + θ2

σ2

)
,

Eed =
1

2
log

⎛
⎜⎜⎝

log

(
σ2+θ2(1−ρ)

σ2

)
(1 − ρ)θ2/σ2

⎞
⎟⎟⎠

−
1

2

σ2

(1 − ρ)θ2
log

(
σ2 + θ2(1 − ρ)

σ2

)
+

1

2
.

Surprisingly, the error exponent of the energy detector with the
optimal threshold (not zero) is the same as that of the optimal de-
tector itself. If the threshold τopt = 0 for the optimal detector is
used instead, the error exponent E′

ed is given by

E′

ed = minΛ1,ed,

=
1

2
log

⎛
⎜⎝σ2(σ2 + θ2) log

(
σ2+θ2

σ2

)
θ2(σ2 + θ2(1 − ρ))

⎞
⎟⎠ −

1

2

σ2(σ2 + θ2) log
(

σ2+θ2

σ2

)
θ2(σ2 + θ2(1 − ρ))

+
1

2
,

(32)

and the Bahadur efficiency can be obtained by using (29) and
(32). The Bahadur ARE of the energy detector with threshold zero
is plotted in Fig. 2. We observe that the ARE decreases as ρ
increases. Interestingly, the ARE increases as SNR increases for
the same value of ρ. (This property of ARE was proven in [5].)

To validate our asymptotic analysis based on the Bahadur ef-
ficiency, we provide some simulation result. We generated equi-
correlated Gaussian signals with ρ = 1/2 and π0 = π1 = 1/2,
and performed the different detection schemes: the optimal detec-
tion, the energy detection with the optimized threshold, and the
energy detection with threshold zero. Fig. 3 shows the average de-
tection error probability w.r.t. the sample size. Indeed, the energy
detection with the optimized threshold has the same error slope as
the optimal detector, whereas the energy detector with threshold
zero has performance degradation.

4. CONCLUSION

In this paper, we have analyzed the asymptotic performance loss
of energy detection compared with optimal detection, based on the
the Bahadur ARE, which is the ratio of the error exponents of two

0 100 200 300 400
10

−4

10
−3

10
−2

10
−1

10
0

n (Sample Size)

E
rr

or
 P

ro
ba

bi
lit

y

Bayesian Probability of Error (SNR=1, rho=0.5)

Optimal Detection
Energy Detection (τ

ed
)

Energy Detection(τ
ed0

)

Fig. 3. Probability of error (θ2/σ2 = 1, ρ = 0.5)

detectors. Based on the Bahadur ARE, we have shown that the
optimal threshold for optimal detection is not optimal for energy
detection and that the optimal threshold for energy detection can
be obtained by solving an integral equation. We have provided an
example of the detection of equi-correlated Gaussian signals, and
the numerical result validates our asymptotic analysis in the finite
sample regime.
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