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ABSTRACT

In this work, we consider the problem of detecting the pres-

ence of a prospective moving target from a set of censored

measurements produced by a generic sensor and propose a

novel track-before-detect algorithm which exploits the inher-

ent sparse nature of the measurement data to achieve com-

plexity efficiency. The impact of the censoring stage on the

system complexity and performance is investigated.

Index Terms— Track-before-detect (TBD), censored ob-

servation, generalized likelihood ratio test (GLRT).

1. INTRODUCTION

Track-Before-Detect (TBD) has been proposed to detect the

presence of a moving object and possibly estimate its posi-

tion in a suitably defined state space [1–5]. The returns col-

lected by a sensor in a number of consecutive epochs are

jointly processed (typically in a Generalized-Likelihood Ratio

Test, GLRT), and target detection is reduced to searching for

the path with maximum metric in a state trellis and compar-

ing the cumulated metric to a detection threshold. However,

this strategy hardly leads to real-time implementable schemes

when the cardinality of the state space in large, even resort-

ing to dynamic programming algorithms, such as the Viterbi

algorithm [6]. The main reason for such an un-affordable

complexity is that all of the observations are retained at each

epoch and processed. In this paper we propose and analyze

a different approach, based on retaining only the significant
returns, i.e., those whose modula exceed a pre-assigned pri-

mary threshold: thus all censored observations collapse into a

unique state, and at each epoch the state space may shrink

or expand based on the intensity of the observed returns.

Higher primary thresholds may reduce the complexity of the

algorithm used to compute the test statistics but may also

cause some loss with respect to the un-censored case: how-

ever, we produce experimental evidence that the complexity-

performance trade-off can be advantageous.

The contributions of this study are: a) We outline the

observation model for censored observations, deriving the

GLRT (which generalizes the one of [5]); b) Based on a), we
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propose a new TBD algorithm, offering a closed-form com-

plexity analysis; c) The system performance is assessed in

term of probability of detection (PD) versus probability of

false alarm (PFA), showing the inherent trade-off between the

achievable PD gain, the system complexity (tied to the num-

ber of integrated frames), and the censoring threshold.

2. PROBLEM FORMULATION

We consider a sensor consisting of Nx ×Ny resolutions cells

(or pixels) of side length Δx and Δy along the x and y dimen-

sions, respectively. The center of cell (i, j) is at (iΔx, jΔy),
for i = 1, . . . , Nx and j = 1, . . . , Ny . Measurements are

recorded at discrete time instants �T , where T is the sam-

pling interval and � ∈ Z. We assume that at most one target is

present in the scene, and that the target signature appears on

at most one pixel at each sampling instant.

The input signal ζ�(i, j) captured by resolution element

(i, j) at epoch � is

ζ�(i, j) =

⎧⎪⎨
⎪⎩
s�(i, j) + n�(i, j), if the target

is present in (i, j)

n�(i, j), otherwise

where n�(i, j) and s�(i, j) represent the noise and the target

component, respectively, modeled as independent Gaussian

circularly-symmetric complex random variables with vari-

ances 1 and ρ, ρ being the signal-to-disturbance (SDR) ra-

tio. The measurement generating process consists of a square-

law envelope detector followed by a censoring stage operating

with a threshold γ1. The sensor measurements are

z�(i, j) =

{
|ζ�(i, j)|2, if |ζ�(i, j)|2 ≥ γ1

0, otherwise
(1)

for i = 1, . . . , Nx and j = 1, . . . , Ny . We refer to

the collection of data measurements Z� = {z�(i, j), i =
1, . . . , Nx, j = 1, . . . , Ny} at epoch � as the �-th data frame.

The censored observations are sent to the detector, whose

task is to determine if a target is present (hypothesis H1) or

not (hypothesis H0) at epoch �. The detector is a causal fil-

ter which jointly elaborates the current data frame Z� along

with the L − 1 past frames Z�−1, . . . , Z�−L+1. If a target is
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declared, the detector sends its position and signal strength

to the successive tracking stage for further processing. The

detector cannot declare a target in cell (i, j) at epoch � if

z�(i, j) = 0, since there would be no signal strength infor-

mation to be sent to the tracking stage. The focus of this work

is on the design of the detection stage.

3. GENERALIZED LIKELIHOOD RATIO TEST

To simplify exposition, let us assume that ZL is the cur-

rent data frame, so that the observations taken at epochs

� = 1, . . . , L are jointly processed. Also, indicate by (x�, y�)
the cell occupied by the target in the �-th frame under the

hypothesis H1, and define x = (x1 · · ·xL)
T and y =

(y1 · · · yL)
T . The sequence of pixels (x,y) defines the tar-

get trajectory over the L processed frames.

Assuming cell-to-cell and frame-to-frame independence,

the densities of the observations under the two hypotheses are⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L∏
�=1

f1
(
z�(x�, y�)

) Nx∏
i=1
i �=x�

Ny∏
j=1
j �=y�

f0
(
z�(i, j)

)
, under H1

L∏
�=1

Nr∏
i=1

Na∏
j=1

f0
(
z�(i, j)

)
, under H0

(2)

where

f1(z) =(1− pd1)�{0}(z) +
e−z/(1+ρ)

1 + ρ
�[γ1,∞)(z)

f0(z) =(1− pfa1)�{0}(z) + e−z
�[γ1,∞)(z)

�B is the indicator function for the set B, and1

pfa1 =

∫ ∞

γ1

e−zdz = e−γ1 (3a)

pd1 =

∫ ∞

γ1

e−z/(1+ρ)

1 + ρ
dz = pfa

1/(1+ρ)
1 . (3b)

From (2), the GLRT is obtained by maximizing the log-

likelihood ratio over the set of admissible target trajectories,

say R, and comparing it with a secondary threshold, i.e.,

max
(x,y)∈R

L∑
�=1

ln
f1
(
z�(x�, y�)

)
f0
(
z�(x�, y�)

) H1

≷
H0

γ′
2. (4)

After some manipulations, the GLRT in (4) can be recast as

max
(x,y)∈R

L∑
�=1

[
z�(x�, y�)− cmiss

]
�[γ1,∞)

(
z�(x�, y�)

) H1

≷
H0

γ2

(5)

1The measurements in (1) are mixed (discrete/continuous) random vari-

ables, and the densities f1 and f0 are computed with respect to the measure

defined as the sum of the Dirac measure centered in 0 and the Lebesgue mea-

sure.

where

cmiss =
1 + ρ

ρ
ln

(1 + ρ)
(
1− pfa

1/(1+ρ)
1

)
1− pfa1

. (6)

Notice that, if no censoring is performed on data (i.e.,

γ1 = 0), (5) reduces to the GLRT presented in [5]. If γ1 > 0,

there is a correcting term, cmiss, in the test statistic that ac-

counts for the number of censored data measurements along

each candidate trajectory. Finally, from (3a) and (6), it can be

shown that 0 ≤ cmiss ≤ γ1.

3.1. Admissible target trajectories

A target trajectory (x,y) is admissible if it does not have a

zero measurement in the L-th (current) frame, and it com-

plies with the physical constraints on the target kinematic. In

this work we just force a physical constraint on the maximum

target speed vmax, whereby we have:

R =
{
(x,y) : zL(xL, yL) > 0 and Δ2

x(xq − xh)
2

+Δ2
y(yq − yh)

2 ≤ (vmaxT )
2(q − h)2, ∀ q, h

}
.

3.2. Complexity issues

Brute-force solution to (5) requires evaluating the test statis-

tic for all admissible target trajectories in set R, which entails

a complexity O
(
(NxNy)

L
)
, i.e., exponential in the number

of integrated frames. As shown in [1–5], a possible alterna-

tive is recasting the maximization (5) as the problem of es-

timating the best state sequence of a discrete-time Markov

chain whose state elements are the Nx × Ny pixels and tak-

ing advantage of the Viterbi algorithm [6]: in this case, the

complexity is O(LNxNy), i.e., linear in the number of inte-

grated frames and of resolution elements. In many real-time

applications even this complexity can be unaffordable. Sup-

pose for example that Nx = 3000 and Ny = 600, and that

the target is allowed a transition of ±20 resolution elements

in each dimension; the Viterbi algorithm still has to compute

a maximum between 400 elements (40 × 40 cells along the

two dimensions), for each of the NxNy = 1.8 · 106 resolu-

tion elements of each frame. A novel approach to solve (5),

which exploits the inherent sparse nature of the censored data,

is presented in the next section.

4. PROPOSED TBD ALGORITHM

The proposed algorithm takes advantage of the fact that the

censoring stage reduces the number of non-zero data mea-

surements in each frame, which can be even much smaller

than the number of resolution elements NxNy .
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4.1. Alarm lists

To explain the algorithm, we organize the non-zero data

measurements (also called here alarms) at epoch � into an

alarm list S� = {S1,�, . . . ,SD�,�}, where D� is the num-

ber of alarms, and Sk,� = (x̄k,� ȳk,� z̄k,�). The trajec-

tory of a prospective target from epoch 1 to epoch p, with

1 ≤ p ≤ L, can now be specified by a p-dimensional vector,

say (t1, . . . , tp), with t� ∈ {0, 1, . . . , D�} for � = 1, . . . , p.

Specifically, t� = m means that the target is observed at

epoch �, and the corresponding alarm is Sm,�, while t� = 0
that there is a censored detection at epoch �. The sequence of

positions indexed by (t1, . . . , tp) is{
(x̄t1,1, ȳt1,1), . . . , (x̄tp,p, ȳtp,p)

}
while the corresponding measurements are z̄t1,1, . . . , z̄tp,p,

with the understanding that z̄t�,� = 0 and (xt�,�, yt�,�) is not

defined if t� = 0. Let Tk,p be the set of p-dimensional vectors

indexing the admissible trajectories ending in Sk,p at epoch

p, i.e.,

Rk,p =
{
(t1, . . . , tp) : tp = k and Δ2

x(x̄tq,q − x̄th,h)
2

+Δ2
y(ȳtq,q − ȳth,h)

2 ≤ (vmaxT )
2(q − h)2,

∀ q, h such that tq, th �= 0
}

The GLTR (5) can now be recast as

max
k∈{1,...,DL}

max
(t1,...,tL)∈Rk,L

L∑
�=1

z̄t�,�︸ ︷︷ ︸
Fk,L

H1

≷
H0

γ2.

An algorithm to compute {Fk,L}DL

k=1 is presented next.

4.2. Track formation

Let Tk,p be the p-dimensional integer vector indexing the best

(i.e., with the largest statistic) trajectory ending in Sk,p at

epoch p, and let Fk,p be the corresponding statistic:

Tk,p = arg max
(t1,...,tp)∈Rk,p

p∑
�=1

z̄t�,�

Fk,p = max
(t1,...,tp)∈Rk,p

p∑
�=1

z̄t�,�.

Also, let Mp,k(q) denote the set of alarm indices at epoch q
compatible with alarm k at epoch p, i.e.,

Mk,p(q) =
{
j ∈ {1, . . . , Dq} : Δ2

x(x̄j,q − x̄k,p)
2

+Δ2
y(ȳj,q − ȳk,p)

2 ≤ (vmaxT )
2(q − p)2

}
.

Then, the following algorithm iteratively computes

{Tk,p, Fk,p, k = 1, . . . , Dp} from {Tk,q, Fk,q, k =
1, . . . , Dq, q = 1, . . . , p− 1}.

Algorithm 1.
1: Initialization: p = 1
2: for k = 1, . . . , D1 do
3: Fk,1 = z̄k,1
4: Tk,1 = (k)
5: end for
6: Iteration: p = 2, . . . , L
7: for k = 1, . . . , Dp do
8: m(q) = max

j∈Mk,p(p−q)
Fj,p−q, q = 1, . . . , p− 1

(max ∅ = 0)
9: if m(q) = 0∀ q then

10: Fk,p = z̄k,p
11: Tk,p = (0 . . . 0︸ ︷︷ ︸

p−1

k)

12: else
13: Fk,p = z̄k,p + max

q∈{1,...,p−1}
m(q)

14: u = arg max
q∈{1,...,p−1}

m(q)

15: w = arg max
j∈Mk,p(p−u)

Fj,p−u

16: Tk,p = (Tw,p−u 0, . . . , 0︸ ︷︷ ︸
u−1

, k)

17: end if
18: end for

It is worthwhile giving some comments on the iterative

step of the above algorithm. In order to compute Fk,p the al-

gorithm searches in the set Mk,p(p − q) for the best alarm

at epoch p − q that can be linked with the alarm Sk,p at

epoch p (line 8): the largest statistic from epoch p − q,

namely, maxj∈Mk,p(p−q) Fj,p−q , is stored in m(q) for q =
1, . . . , p−1. If no past alarm can be linked to Sp,k at epoch p,

Fk,p is initialized with the current measurement z̄k,p (line 10),

and the corresponding trajectory has p − 1 trailing zeros and

k as the last entry (line 11). Otherwise the best admissible

past alarm is linked with Sk,p: Fk,p is computed by adding

the measurement z̄k,p to the best previous metric (line 13),

and the corresponding trajectory Tk,p is updated accordingly

(lines 14-16).

4.3. Complexity analysis

{D�}L�=1 is a sequence of independent and identically dis-

tributed random variables. Under hypothesis HK , K ∈
{0, 1}, each D� is the sum of two independent Binomial

random variables with parameters (NxNy − K, pfa1) and

(K, pd1). At iteration 1, no operation is required to evaluate

the quantities {Fk,1, Tk,1, k = 1, . . . , D1}. For p ≥ 2, the

kinematic constraints between alarms Sk,p and Sj,p−q must

be checked for j = 1, . . . , Dp−q and for q = 1, . . . , p − 1;

thus, the number of required operations is on the order of

Dp

∑p−1
q=1 Dp−q . Since the iterative step of the algorithm runs

from 2 to L, the average number of required operations is on
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the order of

EK

[
L∑

p=2

Dp

p−1∑
q=1

Dp−q

]

=
(L− 1)L

2

[
(NxNy −K)pfa1 +Kpd1

]2
where EK denotes statistical expectation under hypothe-

sis HK . Hence, the average complexity of the algorithm

is O
(
L2[(NxNy − K)pfa1 + Kpd1]

2
)

under HK . Re-

call now that the complexity of the Viterbi-based routine is

O(LN1N2), whereby the proposed procedure is preferable

under both hypotheses if NxNypfa1 + 1 <
√
NxNy/L, i.e.,

if {
NxNy > L

pfa1 < 1√
LNxNy

− 1
NxNy

.

The first inequality is usually met since, in general, the num-

ber of processed frames is much smaller than the number of

pixels, while the second holds when γ1 is set large enough.

(i.e., for sparse data measurements).

5. NUMERICAL RESULTS

We discuss here a numerical example where Nx = Ny =
400, Δx = Δy = 5 m, vmax = 15 m/s, and T = 1 s. Un-

der H1, we simulate a target in a random-walk motion with

velocity randomly chosen between 0 and vmax. The perfor-

mance of the GLRT is assessed in terms of probability of

false alarm (PFA), i.e., accept H1 under H0, and probabil-

ity of correct detection (PD), i.e., accept H1 under H1. In

Figure 2 we report PD vs PFA for L = 8, ρ = 8, 12 dB,

and pfa1 = {10−i}5i=2. The case pfa1 = 1 (i.e., uncensored

data) is not included, since its computational complexity is

too demanding. For the sake of comparison, we also show

the performance when L = 1 and pfa1 = 10−2, i.e., when

no TBD processing is undertaken. For fixed pfa1 = 10−2,

the detector performance improves for increasing L = 1, 4, 8.

Clearly, this gain comes at the price of a larger computational

complexity, which scales as L2 for the proposed algorithm.

Remarkably, this complexity increment can be balanced by

lowering pfa1 to 10−3, 10−4, 10−5, i.e., by reducing the num-

ber of data measurements to be processed, while still achiev-

ing a significant performance improvement with the respect

to the case where no TBD processing is undertaken.
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