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ABSTRACT

In [1], a Bayesian two-threshold algorithm was obtained for quick-
est detection of a change in the distribution of a sequence of ran-
dom variables, subject to constraints of probability of false alarm
and observation cost. This algorithm was shown to be asymptoti-
cally optimal and to have good trade-off curves. In this paper, the
results in [1] are extended to the more practically relevant minimax
setting. Motivated by the structure of the algorithm developed in [1],
a CUSUM based algorithm, called DE-CUSUM is proposed, which
can be used for on-off observation control and to detect change as
quickly as possible subject to a false alarm constraint. It is shown
that the DE-CUSUM algorithm inherits the good qualities of the al-
gorithm in [1], i.e., it is also asymptotically optimal and has good
trade-off curves. Numerical results show that the DE-CUSUM algo-
rithm provides a substantial savings in the observation cost over the
naive approach of fractional sampling.

Index Terms— Change point detection, observation con-
trol, energy-efficient sensing, CUSUM.

1 Introduction
In the classical problem of quickest change detection [2], [3],
a change in the distribution of a sequence of random vari-
ables has to be detected as soon as possible, subject to a con-
straint on the probability of false alarm. In many engineer-
ing applications of quickest change detection, e.g., statistical
quality control, sensor networks etc, there is a cost associ-
ated with acquiring information or taking observations. In
[1], we considered the problem of quickest change detection
under constraints on the observation cost and probability of
false alarm in the Bayesian setting. We captured the obser-
vation cost through the average number of observations used
before the change point and designed a two-threshold algo-
rithm for on-off observation control. Observations are taken
only if the a posteriori probability is above a thresholdB, and
change is declared the first time the a posteriori probability
crosses another threshold A > B. We showed that this al-
gorithm is asymptotically optimum, i.e., for a fixed constraint
on the observation cost, as the probability of false alarm goes
to zero, the performance of the two-threshold algorithm ap-
proaches that of the Shiryaev algorithm, which is optimum for
the case where all the observations are used for detecting the

change [3]. The two-threshold algorithm was also shown to
have good delay-observation cost trade-off curves: for mod-
erate values of probability of false alarm, the delay of the al-
gorithm is within 10% of the Shiryaev delay even when the
observation cost is reduced by more than 50%.

In most practical applications, prior information about the
distribution of the change point is not available. As a result,
the Bayesian solution is not directly applicable. Our goal in
this paper is to obtain a simple non-Bayesian data-efficient
quickest change detection algorithm which has some optimal-
ity properties and has good performance.

For the classical quickest change detection problem, an al-
gorithm for the non-Bayesian setting was obtained by taking
the geometric parameter of the prior on the change point to
zero [4]. Such a technique cannot be used in the data-efficient
setting. This is because when an observation is ’skipped’ in
the two-threshold algorithm in [1], the a posteriori probabil-
ity is updated using the geometric prior. In the absence of
prior information about the distribution of the change point, it
is by no means obvious what the right substitute for the prior
is. But, we note that the duration for which observations are
not taken in the algorithm in [1], is also a function of the ’un-
dershoot’ of the a posteriori probability when it goes below
the threshold B. We show in this paper that this fact can be
used to design a good test in the non-Bayesian setting.

In the following, we define Pn to be the probability mea-
sure when change happens at time n, and En to be the corre-
sponding expectation. The notationP∞ andE∞ is used when
the entire observation sequence is i.i.d. with density f0.

2 Bayesian formulation
We begin with a review of the Bayesian setting and the algo-
rithm in [1], which we call the DE-Shiryaev algorithm. Let
{Xn} be a sequence of random variables whose distribution
changes at a random time Γ. Before Γ, the {Xn}’s are in-
dependent and identically distributed (i.i.d.) with density f0,
after Γ they are i.i.d. with density f1 and Γ is geometrically
distributed with parameter ρ.

In order to minimize the average number of observations
used before Γ, at each time instant, a decision is made on
whether to use the observation in the next time step, based on
all the available information. Let Sk ∈ {0, 1}, with Sk = 1 if
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it is been decided to take the observation at time k, i.e. Xk is
available for decision making, and Sk = 0 otherwise. Thus,
Sk is an on-off (binary) control input based on the information
available up to time k − 1, i.e.,

Sk = μk−1(Ik−1), k = 1, 2, . . .

with μ denoting the control law and I defined as:

Ik =
[
S1, . . . , Sk, X

(S1)
1 , . . . , X

(Sk)
k

]
.

Here, X(Si)
i represents Xi if Si = 1, otherwise Xi is absent

from the information vector Ik.
Let γ = {τ, μ0, . . . , μτ−1} represent a policy for data-

efficient quickest change detection, where τ is a stopping time
on the information sequence {Ik}. The objective in [1] is to
solve the following optimization problem:

minimize
γ

ADD(γ) = E
[
(τ − Γ)+

]
, (1)

subject to PFA(γ) = P(τ < Γ) ≤ α,

and ANO(γ) = E

⎡
⎣min(τ,Γ−1)∑

k=1

Sk

⎤
⎦ ≤ β.

Here, ADD, PFA and ANO stand for average detection delay,
probability of false alarm and average number of observations
used, respectively, and α and β are given constraints.

Define,
pk = P{Γ ≤ k | Ik}.

Then, the two-threshold algorithm from [1] is:

Algorithm 1 (DE-Shiryaev: γ(A,B)). Start with p0 = 0 and
use the following control, with B < A, for k ≥ 0:

Sk+1 = μk(pk) =

{
0 if pk < B

1 if pk ≥ B

τ = inf {k ≥ 1 : pk > A} .

(2)

The probability pk is updated using the following recursions:

pk+1 =

{
p̃k = pk + (1− pk)ρ if Sk+1 = 0

p̃kL(Xk+1)
p̃kL(Xk+1)+(1−p̃k)

if Sk+1 = 1

with L(Xk+1) = f1(Xk+1)/f0(Xk+1).

With B = 0 the DE-Shiryaev algorithm reduces to the
Shiryaev algorithm. It is shown in [1] that the PFA and ADD
of the DE-Shiryaev algorithm approach that of the Shiryaev
algorithm as α → 0.

When Algorithm 1 is employed, the probability pk typi-
cally evolves as depicted in Fig. 1. As observed in [1], when
pk < B, pk increases monotonically. This is because when an
observation is skipped, pk is updated using the prior ρ. Thus,
the duration for which the observations are skipped depends
on both the undershoot of pk, when pk goes below the thresh-
old B, and also on the value of prior ρ. Based on this obser-
vation we propose a non-Bayesian algorithm in Section 3.
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Fig. 1: Evolution of pk for f0 ∼ N (0, 1), f1 ∼ N (0.5, 1), and
ρ = 0.01, with thresholds A = 0.65 and B = 0.2.

3 Minimax formulation and DE-CUSUM
In order to extend the work in [1] to a minimax setting, we
first propose a different way to capture the observation cost.
Note that in the Bayesian setting, due to the geometric prior,

ANO ≤
1

ρ
.

Such a bound is not possible in the absence of the prior. But,
we observe that the control employed in Algorithm 1, essen-
tially controls the fraction of observations used before change
point in the long run. Let Ik, τ , and γ be as defined earlier.
We propose the following duty cycle based observation cost
function, Pre-change Duty Cycle (PDC):

PDC = lim sup
n

1

n
En

[
n−1∑
k=1

Sk

∣∣∣τ ≥ n

]
. (3)

For delay and false alarm rate, we use the minimax setting of
Pollak [4]: the supremum of the conditional delay

CADD(γ) = sup
n

En [τ − n|τ ≥ n] ,

and the false alarm rate

FAR =
1

E∞ [τ ]
.

Our objective is to solve the following optimization problem.

minimize
γ

CADD(γ),

subject to FAR(γ) ≤ ζ, and PDC(γ) ≤ η. (4)

Here, 0 ≤ ζ, η ≤ 1. In (4), we have implicitly restricted the
search over those control policies for which the CADD, FAR,
and PDC are well defined.

It is difficult to solve (4) directly and obtain an exact so-
lution (even with η = 1). But, it is known that the CUSUM
algorithm is asymptotically optimal (as ζ → 0) for η = 1 [5].
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Also, the CUSUM algorithm is exactly optimal with respect
to another closely related non-Bayesian criterion proposed by
Lorden [5]. Moreover, it is well known that the CUSUM algo-
rithm can also be used in a non-parametric setting. For these
reasons, we base our data-efficient quickest change detection
algorithm on the CUSUM algorithm. We will show in the
next section that the DE-CUSUM algorithm is also asymptot-
ically optimal, with the same asymptotic delay as that of the
CUSUM algorithm, for each fixed η, as ζ → 0.

Algorithm 2 (DE-CUSUM: γ(d, μ, h)). Start with W0 = 0
and fix μ > 0, d > 0 and h ≥ 0. For k ≥ 0 use the following
control:

Sk+1 =

{
0 if Wk < 0

1 if Wk ≥ 0

τw(d) = inf {k ≥ 1 : Wk > d} .

The statistic Wk is updated using the following recursions:

Wk+1 =

{
min{Wk + μ, 0} if Sk+1 = 0

(Wk + logL(Xk+1))
h+ if Sk+1 = 1

where L(Xk+1) = f1(Xk+1)/f0(Xk+1) , and

(x)h+ =

{
max{x, 0} if x > −h

x otherwise

If h = ∞, the DECUSUM algorithm reduces to the
CUSUM algorithm [2]: W0 = 0 and for k ≥ 0,

Wk+1 = max{0,Wk + logL(Xk+1)}.

We use ν(d) for the stopping time of the CUSUM algorithm.
When h = 0, the DE-CUSUM algorithm works as fol-

lows. The statistic Wk starts at 0, and evolves according
to the CUSUM algorithm till it goes below 0. When Wk

goes below zero, it does so with an undershoot. Beyond this,
Wk is incremented deterministically (by using the recursion
Wk+1 = Wk + μ), and observations are skipped till Wk

crosses 0 from below. As a consequence, the number of ob-
servations that are skipped is determined by the undershoot
as well as the parameter μ. Thus, μ is a substitute for the
Bayesian prior ρ. When Wk crosses 0 from below, it is reset
to 0. OnceWk = 0, the process renews itself and continues to
evolve this way until Wk > d, at which time a change is de-
clared. If h = 0, we note that it may not be possible to achieve
PDC values close to 1. If h �= 0, samples are skipped only
if the undershoot is greater than h. This ensures achievabil-
ity of arbitrary PDC values. The evolution of DE-CUSUM is
plotted in Fig. 2.

Apart from being a non-Bayesian version of the DE-
Shiryaev algorithm, the DE-CUSUM algorithm, like the
CUSUM algorithm, has two interesting interpretations. First,
it can be seen as a sequence of independent two-sided tests.

In each two-sided test a Sequential Probability Ratio Test
(SPRT) is used to distinguish between the two hypotheses
’pre-change’ and ’post-change’. If the SPRT stops to de-
cide on ’pre-change’, then samples are skipped based on the
likelihood ratio of all the observations taken in the SPRT.
Second, the DE-CUSUM algorithm has a maximum likeli-
hood change point interpretation. At time n, the CUSUM
algorithm is a maximum likelihood test to distinguish be-
tween n + 1 alternatives, {Γ = i}, 1 ≤ i ≤ n and {Γ > n}.
The DE-CUSUM algorithm does the same, with the differ-
ence that the maximum likelihood statistic is computed using
partial set of observations and samples are skipped if the
maximum likelihood statistic is below 0.
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Fig. 2: Evolution of Wk for f0 ∼ N (0, 1), f1 ∼ N (0.75, 1), and
Γ = 40, with d = 7, h = 0.5, and μ = 0.25.

4 Asymptotic optimality of DE-CUSUM
In this section we prove the asymptotic optimality of the DE-
CUSUM algorithm using techniques introduced in [1]. We
first show that we can select a μ and an h so as to meet any
PDC constraint. For this define the following random variable

λ
Δ
= inf{k ≥ 1 : Wk /∈ (0, d), W0 = 0}.

If R is the number of samples skipped if Wλ < d, then by
Wald’s lemma and the renewal reward theorem (also see [1]),
we have

PDC(γ(d, μ, h)) =
E∞[λ|Wλ ≤ 0]

E∞[λ|Wλ ≤ 0] + E∞[R]
.

Note that E∞[λ|Wλ ≤ 0] is not affected by the choice of
h and μ. Also, we can select h such that E∞[R] → ∞ as
μ → 0, and for a fixed μ, E∞[R] → 0 as h → ∞. Thus, any
PDC ∈ [0, 1] is achievable.

We now prove the asymptotic optimality of the DE-
CUSUM algorithm. Define,

Λ
Δ
= λ+R I{Wλ < d}. (5)

Theorem 1. For any fixed value of d, μ and h,

FAR(γ(d, μ, h)) ≤ FAR(ν(d)).
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Proof. By Wald’s lemma [1],

E∞[ν(d)] =
E∞[λ]

P∞[Wλ > d]
≤

E∞[Λ]

P∞[Wλ > d]
= E∞[τw(d)].

We now show that the CADD for the DE-CUSUM algo-
rithm and the CUSUM algorithm are approximately equal as
d → ∞.
Theorem 2. For any fixed value of μ and h,

CADD(γ(d, μ, h)) = CADD(ν(d))
(
1 + o(1)

)
as d → ∞.

Proof. From Theorem1 and asymptotic optimality of CUSUM,
we have

CADD(γ(d, μ, h)) ≥ CADD(ν(d))
(
1 + o(1)

)
as d → ∞.

Based on the ’resetting’ arguments given in [1], it can be
shown that,

En[τw(d) − n|τw(d) ≥ n] ≤ En[Tn] +
E1[Λ]

P1(Wλ > d)
.

Here, Tn is a positive random variable which can be bounded
by a random variable which is not a function of the threshold
d and time n. It follows that

CADD(γ(d, μ, h)) ≤
E1[Λ]

P1(Wλ > d)

(
1 + o(1)

)
as d → ∞.

The theorem follows because,

E1[Λ]

P1(Wλ > d)
=

E1[λ]

P1(Wλ > d)

(
1 + o(1)

)
as d → ∞,

and for any d, CADD(ν(d)) = E1[λ]
P1(Wλ>d) .

The theorems above taken together imply the asymptotic
optimality of the DE-CUSUM algorithm.

5 Trade-off curves
The asymptotic optimality of the DE-CUSUM algorithm for
all η does not guarantee good performance for moderate val-
ues of FAR. In Fig. 3, we plot the CADD-PDC trade-off
curves for the DE-CUSUM and the CUSUM algorithms us-
ing simulations, for two different values of PDC constraints:
η = 0.5 and η = 0.25. For simplicity we restrict ourself
to h = 0 in this section. Clearly, one can do only better by
having additional degree of flexibility, i.e., by using h �= 0.
For comparison, we also plot the trade-off curves for the
fraction sampling scheme, in which, to achieve a PDC of η,
the CUSUM algorithm is employed, and a sample is chosen
with probability η for decision making. Note that this scheme
saves samples without exploiting any knowledge about the
state of the system. As can be seen from the figure, a PDC of
0.5 (using only 50% of the samples in the long run) can be

achieved using the DE-CUSUM algorithm with a very small
penalty on the delay. If we wish to achieve a PDC of 0.25,
then we have to incur a significant penalty (of approximately
6 slots in Fig. 3). But, note that the difference of delay with
the CUSUM algorithm remains fixed as FAR → 0. This
is the result of asymptotic optimality of the DE-CUSUM
algorithm. Note also from Fig. 3 the significant reduction
in the number of observations used as compared to the frac-
tion sampling scheme. Thus, the trade-off curves show that
the DE-CUSUM algorithm has good performance even for
moderate FAR, when the PDC constraint is moderate.
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Fig. 3: Trade-off curves for DE-CUSUM for PDC = 0.25, 0.5,
with f0 ∼ N (0, 1) and f1 ∼ N (0.75, 1).

6 Conclusions and future work
We proposed a data-efficient non-Bayesian quickest change detec-
tion algorithm DE-CUSUM, and showed that its performance ap-
proaches that of the CUSUM algorithm as the false alarm rate goes
to zero. We also showed that the DE-CUSUM algorithm has good
trade-off curves and provides substantial benefits over the naive ap-
proach of fractional sampling. It is not difficult to see that the DE-
CUSUM algorithm can also be applied for data-efficient quickest
change detection in a system where the observations arrive at the de-
cision maker in batches, e.g. a sensor network, and the distributions
of all the random variables in the batch change at the change point.
The DE-CUSUM algorithm can then be applied by serializing the
observation sequence in each batch and then treating the batch ob-
servation sequence as a single observation sequence.
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