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ABSTRACT

This paper addresses threat propagation on space-time graphs, defined
to be a time-sampled graph. The application considered is geographi-
cal sites connected by tracks, though such graphs arise in many fields.
Several new concepts and efficient algorithms are introduced, specif-
ically, the space-time adjacency matrix and harmonic threat propaga-
tion. The cued threat propagation problem is shown to be equivalent to
the harmonic solution to Laplace’s equation on the graph. Alternately,
the Perron-Frobenius theorem is applied to a modified space-time adja-
cency matrix to derive a concept of eigen-threat on space-time graphs.
Both approaches yield fast, scalable algorithms for space-time threat
propagation applicable to both very small and very large graphs. Al-
gorithms are motivated by a continuous time stochastic process model.
Detection performance is shown using a simulated insurgent network
data for which harmonic space-time threat propagation achieves an
84% probability of detection with a 4% false alarm probability over
the entire graph.

1. INTRODUCTION

Graph exploration and detection are the common objectives in a wide
variety of applications ranging from social network analysis, web
tracking and advertising, law enforcement, and counter-terrorism. In
the case where connections between the graph’s vertices are dynamic,
temporal correlations may be used to improve the performance of
graph detection. This paper considers the problem of “threat propaga-
tion” motivated by the example of geographic sites connected together
by a set of time-stamped tracks [5, 6, 10]; this particular formula-
tion is analogous to the centrality metrics commonly used in network
analysis [4,7,8]. Several new concepts and efficient algorithms are
introduced that address the problems of exploration and detection
in graphs with both spatial and temporal characteristics—space-time
graphs. A space-time graph is defined here to be a time-sampled graph
with a specific edge set. Also defined are the corresponding concepts
of the space-time adjacency matrix and space-time threat propagation.
A continuous time stochastic process model is used to motivate the
use of algebraic rules for threat propagation. It is shown that in the
case of “cued” threat propagation—a priori threat assigned to one or
more vertices—the threat propagation problem may be viewed as the
harmonic solution to Laplace’s equation on the graph, and the corre-
sponding algorithm is called harmonic threat propagation. Alternately,
a related “eigen-threat” algorithm is derived based on the stochastic
model and the Perron-Frobenius theorem. Many graphs from prac-
tical applications are quite large, containing thousands of vertices or
more, and their corresponding time-sampled space-time graphs are
very large, easily exceeding size one million. The approaches and

FThis work is sponsored by the National Geospatial-Intelligence Agency
under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, con-
clusions and recommendations are those of the author and are not necessarily
endorsed by the United States Government.

U.S. Government Work Not Protected by U.S. Copyright

3933

h

15)

I3

Iy

Is

T

Fig. 1. An example of a directed space-time graph G with vertices
VxT,ie., V={uv}sampled at index times T = (t,,..., ).

algorithms developed in this paper all scale from very small space-
time graphs, such as those encountered at the beginning of graph
exploration, to very large space-time graphs when the full graph is
known.

2. SPACE-TIME GRAPHS AND PROPAGATION

2.1. Space-Time Graphs and Adjacency Matrices

The set and graph theoretic notation of Diestel [1] and Godsil and
Royle [3] will be used, where V X T' denotes the Cartesian product
of sets V and T, and [V]* c 2V denotes the set of all 2-element subsets
of V. Let G = (V,E) be a simple graph with vertex set V and edge
set E C [V]?. The adjacency matrix A = A(G) of G is the (0, 1)-matrix
with A;; = 1iff {i, j} € E. A directed graph G’ (also denoted G by
abuse of notation) is determined by an orientation o: [V]> —» V x V
(the ordered Cartesian product of V with itself). A weighted directed
graph is a directed graph G along with a map a: VXV — R that
assigns a weight g;; to each arc from node v; to node v;. The weighted
adjacency matrix is simply the matrix A;; = a(v;, v)).

Definition 1 (Space-Time Graph and Adjacency Matrix) (1) Let
G = (V, E) be either a simple or a directed graph, and T = (t|,t,, ..., tx)
be an index set of K sample times. A space-time graph

Gr =(VXT,Er) (1)

is defined by the vertices formed by the Cartesian product VX T =
T :--1IT (V sampled at times T, or the disjoint union of T with
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itself #V times) and an edge set Er C [V x T that satisfies the two
constraints:

a) If (u(ty),v(t))) € Er then (u,v) € E.

b) All temporal subgraphs ((u,v), Er(u,v)) between any two nodes u
and v are defined by a temporal model Er(u,v) c [T || T1>

A directed space-time graph Gf7 is a space-time graph Gr along
with an orientation o for each of the edges. A weighted space-
time graph is a directed space-time graph with along with a map
a: (VxT)x(VxT) — R that assigns a weight a;jy to each arc
from node vi(t) to node v;(t)). (2) The weighted space-time adjacency
matrix of the space-time graph Gy is the weighted adjacency matrix
Ajjua = a(vi(t), vi(ty)).

In this definition of a space-time graph, the temporal model
Er(u,v) C [T]]T)? is determined by the temporal correlations be-
tween vertices at specific times, and is therefore dependent on the
specifics of the problem (Fig. 1). A concrete example is provided in
Section 2.2.

2.2. Space-Time Threat Propagation

Let G = (V, E) be a graph whose vertices are connected by tracks with
known start and stop times. A track T departs vertex v at time ¢, and
arrives at vertex u at time 7¥; assume that all times are discretized from
the index set 7 = (#1,. .., tx). Given a known quantity such as “threat”
at a particular node, these tracks induce threat propagation through the
graph over time. The threat propagation model will determine a space-
time graph Gy = (VX T, Ey).

Though a discrete set of index times 7" will be used throughout the
paper, the rules and functional forms for threat propagation around the
graph will be motivated by a continuous time stochastic process model
for threat. This model will also be used to establish the use of algebraic
rules for threat propagation. Given a vertex v, denote the threat at v and
at time 7 € R by the {0, 1 }-valued stochastic process ©,(), with value
zero indicating no threat, and value unity indicating a threat.

Definition 2 The probability of threat at v at t is given by

9,0 P©,(1) = 1) = P(©,(1)). @)
By abuse of notation, the event { ®,(f) = 1} will be written as ©,(¢) as
in the second part of Eq. (2).

Assume that a cued threat at v at time # = 0 with probability 6,
is a finite-state continuous-time Markov jump process between from
state 1 to state O with Poisson rate A,, i.e., a threat present at v has
an expected departure time of A;!. Under this assumption, the threat
stochastic process 0, (f) satisfies the Ito stochastic differential equation,

do, = -0,dN,; 0,0) =4, 3

where N, (f) is a Poisson process with rate 4,. Eq. (3) defines a finite-
state stochastic system that may transition from value unity (“threat”)
to zero (“non-threat”), but cannot transition from zero to unity—thus
representing threat information from either an explicit cue or from

tracks connecting the cued threat to other vertices. Conditioning on

0, & 9,(0) and defining 6, = 1 — 6,, the probability distribution be-

tween the threat at time O and at time 7 is,

P(©,(0),0,(1)) = 0,(H=0 [90 (1—exp(=Ay 1)), ] (4)

0,(=1 [ 0 exp(-4,08

with P(©,(0)) defined along the columns and P(®,(0)) along the rows.

Given a threat cue on vertex v at time 0, define the space-time
threat kernel as probability of threat ,(f). A threat that satisfies the
Markov jump process of Eq. (3) has threat kernel

K, (1) = e, 5)

Other threat kernels are possible, such as a Gaussian kernel [9].

Now consider the combined threat from threat at vertex u arriving
or departing at vertex v at time ¢ along a track. By the addition law of
probability, the probability of threat ¢, (r*) = P(®,(r*)) at v at time *
immediately after/before the track from v arrives/departs is modeled
by the equation

P(8,(1) U 0,(1) = P(8,(1) + P(O,(1) = P(O,(N0,(1)).  (6)

If the threat at u and v is independent, then so are the random vari-
ables ©,(r) and ©,(7), hence P(0,(r)0, (1)) = P(0,(1))P(0,(1)). If these
probabilities are moderately small, then this term of Eq. (6) is small,
yielding the approximation

B(%) = P(©,(t) U O,(1) » P(O,(1) + P(O,(1) = 0,(1) + Tu(1). (7)

If the threat at « and v is dependent according to the Poisson process
of Eq. (4) with a cued threat at vertex v* and tracks leading from v* to
both u and v with propagation time difference Ar > 0, then setting 6, =
P(®,(1)), we have P(0,(1)) = e 29, and P(©,(1)0, (1)) = e v20,.
Therefore, P(®,(1) U ©,(t)) = 6, + ¢4, — 49, = ¢,. For
large time differences relative to the Poisson time ﬂ“,,}, the expression
e~ is small, and we may again apply the linear approximation of
Eq. (7) for the combination of independent threats. For small time
differences—especially in the case of vertices adjacent to a cue node—
this approximation does not hold and must be treated separately in a
linear representation of threat propagation. In the case of many tracks
arriving at a vertex at nearby times, the inclusion-exclusion principle
and these same arguments provide a linear approximation for threat
propagation:

P(©,, (DU O, (V- UB,(0) =X P(O,(1)
= 2u P(©,,(00,0) + -+ (=D P([Tc ©,,(0) = Ly %, (1) (8)

Eqgs. (7) and (8) may be conditioned on the probability that threat tra-
verses a particular edge, i.e. P(©,(?)) = X P(®,(D)vi = v)P(vy = v),
where P(v; — v) is the prior. It will be convenient to model this prior
as an unnormalized weight function w: G — R on the graph. Summa-
rizing, the probability of threat ,(¢) at a vertex v connected by tracks
arriving/departing at time ¢ from vertices vy, vy, ..., v, is approximated
by the linear relationship

9u(0) = (Cwm) ™ (0, () + 0y (1) + -+ + 0,,() ©9)

where C is the normalization constant. Clearly, the space-time ad-
jacency matrix plays a central role in determining threat propagation.
Furthermore, Eq. (9) is recognized has having the form of a mean-value
property on the graph, whose solutions may be viewed as discretized
harmonic functions, i.e. solutions to Laplace’s equation for a certain
Laplace-Beltrami operator [11]. This point of view will be essential in
the motivation of threat propagation algorithms.

The model of how threat propagates from vertex u to vertex v over
time is now presented, at first ignoring any threat that may be present
at v. A track departs u at time 7% and arrives at £; therefore, by the
Poisson process model of Eq. (4), the time-dependent threat at v is
given by the equation

(1) = B (DK - 1), 10)

= [T K(t = )5(c - )9, () o, (11)

where K,(f) = e~ as in Eq. (5). Note that threat propagation is
a linear operator from the space of temporal functions at a vertex to

another vertex. Discretizing time, the temporal matrix K% for this
discretized operator has the sparse form

KY=(0...0K(®5-)0...0), (12)
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where O represents an all-zero column, # represents a vector of dis-
cretized time, and the discretized function K(#, — t) appears in the
column corresponding to the discretized time at . Threat propagating
from vertex v to u along the same track 7 is given by the comparable
expression ¢,(1) = &, (t))K(t—t*) whose discretized linear operator K"
takes the form K2 = (0 ... 0K(t—#)0 ... 0) [cf. Eq. (12)] where
the nonzero column corresponds to .. The sparsity of K" and K2* will
be essential for practical space-time threat propagation algorithms.

Theorem 1 Let G = (V,E) be a graph sampled at times T, and any
two vertices u and v connected by tracks Ty, ..., T, with matrices Kﬁ[v
and K7' as in Eq. (12). The space-time graph Gr = (VX T, Er) is
defined by the weighted space-time adjacency matrix A, whose sub-
matrix A, corresponding to vertices u and v is given by the weighted
space-time adjacency matrix

0 2 Ki,“). 13)

A, = uv
(21 KT[ 0

3. HARMONIC THREAT ON SPACE-TIME GRAPHS

3.1. Space-Time Laplacian and Harmonic Threat

This section describes memory and compute-efficient algorithms to
compute cued space-time threat propagation. These methods are based
on standard matrix inversion and that the approximation for threat in
Eq. (9) satisfies the mean-value property, i.e. threat is a harmonic func-
tion for a Laplace-Beltrami operator.

Definition 3 (/) Let A be the space-time adjacency matrix for the
space-time graph Gr. Given a weight w: G — R for each vertex in G
with D = diag(w(v)L, ..., w(vy)I), the space-time Laplacian L is the
matrix

L=I-D"'A. (14)

(2) Given a cue at vertices vy,, ..., Vp., the harmonic space-time threat

propagation equation is

(Lii Lib)(g;) =0 (15
where the space-time Laplacian L. = (;:: f:;) and the space-time

threat vector 9 = (:;‘)) have been permuted so that cued vertices are
in the ‘b’ blocks (the “boundary”), non-cued vertices are in ‘i’ blocks
(the “interior”), and the cued space-time vector ¥y is given. (3) The
harmonic threat is the solution to Eq. (15),

9 = —Lj' (LiyDy). 16)

Note that the space-time Laplacian is a so-called directed Lapla-
cian matrix, and that Eq. (15) [cf. Eq. (9)] is directly analogous to
Laplace’s equation Ag = 0 given a fixed boundary condition. [11] The
weights in D may be the degree of each vertex, i.e. w(v) = d(v), or the
generalized Dijkstra distance from a cue vertex v*, i.e. w(v) = dist(v, v*)
where dist is the smallest sum of degrees along a path from v* to v,
thereby mitigating the effect of paths through high-degree vertices.
The generalized Dijkstra distance will be used for threat propaga-
tion in the results of the next section. The space-time adjacency
matrix A and cued threat vector 1, are nonnegative; therefore, the har-
monic threat of Eq. (16) is also nonnegative. The biconjugate gradient
method can be used to solve this highly sparse linear system, providing
a practical computational approach for space-time threat propagation.
This approach scales well to graphs with thousands of vertices and
thousands of time samples, resulting in space-time graphs of order
ten million or more. In practice, significantly smaller subgraphs are
encountered in applications such as threat network discovery [10], for
which linear solvers with sparse systems are extremely fast.

Threat graph

Background graph.

Fig. 2. (a) Graph of the NGA simulated data comprised of 4478 ver-
tices and 116720 tracks. The foreground subgraph is shown using red
vertices and edges, and the background graph is shown using blue ver-
tices and gray edges. For clarity, the full graph has been downsampled
by a factor of four. (b) Space-Time adjacency matrix of the NGA sim-
ulated data with 313 time samples. Each dot in this sparse matrix itself
represents a sparse 313-by-313 temporal adjacency matrix.

3.2. Eigen-Threat on Space-Time Graphs

Alternatively to harmonic threat, eigenvector centrality [7] may also
be used to compute space-time threat propagation [9], which also re-
lies on the form for threat in Eq. (9) as well as the Perron-Frobenius
theorem [2,3]. Assuming an initial estimate 9© for the probability of
threat across nodes, by Eq. (9) improved estimates are obtained via the
sequence 9% = A9*D = A¥9O for k=1, 2, ... . The normalized
steady-state solution ¥ = 9 is an eigenvector of A. This eigenvector
of A does not account for a cued vertex v*, for which the threat prob-
ability ,+(¢) is determined by Eq. (4), and as shown by Eq. (6), the
approximation used in Eq. (9) does not apply to cued vertices because
threat at adjacent vertices is not independent of the cue. Cued vertices
may be incorporated by introducing the (weighted) cued space-time
adjacency matrix (D~'A)"""!, which is the matrix obtained by replacing
the block-row corresponding to v of D™'A with (0 ... 010 ... 0),
where D represents a weight on the vertices as in Definition 3. This

k
method is motivated by the block matrix identities (11( 0) = ( ! 0),

. ; I K 1
(%IK ;)1) = ((1—21*")K 231) - (II( g) = (II( 8)‘

The Perron-Frobenius theorem guarantees that if the directed
graph G defined by the tracks is strongly connected, then the prin-
cipal eigenvector of the cued, weighted space-time adjacency matrix
(D~'A)"»1-7ec is also nonnegative, yielding another practical approach
to space-time threat propagation:

9 = AD A el a7

An Arnoldi iteration method such as that used in Matlab’s eigs com-
mand can be used to compute the principal eigenvector. Arnoldi it-
eration is more slightly expensive (though of comparable complexity)
than linear solvers such as the biconjugate gradient method. Therefore,
harmonic threat propagation of Section 3.1 is preferred. Furthermore,
there is not a significant performance difference between harmonic and
eigen-threat observed in the example data used in the next section.

4. DETECTION ON SPACE-TIME GRAPHS

The space-time threat propagation algorithms developed in the previ-
ous sections can be used for both prioritized discovery of threat net-
works [10] and for threat network detection [9, 10]. In this section,
detection performance results the later application will be shown sim-
ulated vehicle motion data from the National Geospatial-Intelligence
Agency (NGA). This data is derived from a scripted scenario that con-
tains a clandestine insurgent network [Fig. 2(a)]. 31 (of 4478) loca-
tions belong to the threat network. Time is discretized into 10 minute
intervals, resulting in a space-time adjacency matrix whose order is
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Fig. 3. The probability of detection (PD) versus the number of false
alarms (NFA) for the space-time threat propagation (STTP) algorithm
(red) and the modified breadth-first search (BFS) algorithm (blue)
given the cued vertex shown in Fig. 4.

over 1.4 million [Fig. 2(b)]. Forming this sparse matrix requires about
1 GiB and 15 seconds on an x86_64 GHz dual-core laptop computer.
Computing the harmonic threat takes 5 seconds, and the eigen-threat
takes 20 seconds. Arnoldi iteration is slightly more expensive that the
biconjugate gradient method. Because the compute and memory cost
of both methods is O(N-#E) with N = #V-#T for space-time graphs,
all these values scale linearly with the spatial and temporal scale.

Graph detection performance over the entire space-time data set
provides a baseline measure of algorithm performance. The receiver
operating characteristic (ROC) for the harmonic space-time threat
propagation (STTP) algorithm relative to the Dijkstra-weighted ad-
jacency matrix is shown in Fig. 3 for the entire graph, given the cue
shown in Fig. 4. For comparison against a nominal spatial-only algo-
rithm, the threat computed using a modified breadth-first search (BFS)
algorithm is also shown. Standard BFS uses the principal eigenvec-
tor of the degree-weighted adjacency matrix, which is trivially the
uniform vector ¥9grs = (1,1,...,1)", i.e. threat diffuses evenly to
vertices connected via tracks to the cued node. This trivial solution
is avoided by taking threat computed from the harmonic threat of the
Dijkstra-weighted spatial adjacency matrix. The amount by which
the performance of the STTP algorithm exceeds the spatial-only BFS
algorithm shows the detection improvement gained by using temporal
information.

There are two steps to cued network detection: network discovery
and network detection [10]. Network discovery involves exploring and
building a graph over time based on cued information and search prior-
itization. Network detection involves a binary decision of discovered
vertices into threats and nonthreats. Space-Time threat propagation
improves the performance of the network discovery step over spatial-
only algorithms because temporal information affects the prioritization
of graph exploration. If the entire graph has been explored, temporal
information may also be useful in the detection step that involves the
computation of threat at each vertex. The relative benefit of temporal
information for graph detection is expected to be greater for smaller
graphs and smaller time extents, though this will not be quantified in
the paper. The space-time algorithm outperforms the spatial-only algo-
rithm over most of the ROC curve in Fig. 3. At NFA = 180, the STTP
algorithm has a detection probability of 84% and the modified BFS al-
gorithm has 65%. At the fixed probability of detection PD = 84% the
STTP algorithm has 180 false alarms and BFS has 517. The perfor-
mance of the eigen-threat algorithm of Section 3.2 is also computed,
but it is statistically (and graphically) indistinguishable from the per-
formance of the harmonic threat algorithm. For graphs much smaller
than the one represented by the entire data set, as encountered during
network exploration, the detection performance of both algorithms is
expected to decrease with an increased relative performance of space-
time algorithms over spatial-only algorithms.

STTP Modified
BFS
Threat graph .,
2o . - Threat graph
gt ey o SRCL N *
e False alarms %t

False alarms

Fig. 4. The detected threat graph for the STTP and modified BFS
algorithms at a constant false alarm rate (CFAR) at NFA = 180. The
cue is green, the truth is red, and the false alarms are blue. The higher
detection rate of PD = 84% for STTP compared to 65% for BFS is
observed, resulting in a greater number of threat vertices detected.

5. CONCLUSIONS

Temporal correlations improve the performance of graph exploration
and detection applications in which vertices have time-dependent con-
nections. Definitions are introduced for a space-time graph and corre-
sponding notions of the space-time adjacency matrix and space-time
threat propagation. For cued threat propagation, the threat propagation
problem is equivalent to the harmonic solution to Laplace’s equation
on the graph; this is called the harmonic space-time threat. Alter-
nately, the principal eigenvector of a modified space-time adjacency
matrix also represents space-time threat; this is called eigen-threat.
For large graphs, harmonic threat is computed using the biconjugate
gradient method, and eigen-threat is computed using Arnoldi itera-
tion, which both scale well over problem size. However, the first
method is faster, and the detection performance eigen-threat is statis-
tically indistinguishable from harmonic threat with the data used in
Section 4, hence harmonic threat is preferred if only for computational
reasons. Both threat propagation algorithms are derived assuming a
Poisson continuous time stochastic process and dependency model.
The graph detection performance of harmonic space-time threat propa-
gation is shown using simulated vehicle motion data from the National
Geospatial-Intelligence Agency and compared to a spatial-only mod-
ified breadth-first search method. For a cued threat, the space-time
algorithm is shown to exceed the spatial-only method, consistent with
comparable results for graph exploration.
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