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ABSTRACT

An iterative reweighted algorithm is proposed for the recov-

ery of jointly sparse vectors from multiple-measurement vec-

tors (MMV). The proposed MMV algorithm is an extension

of the iterative reweighted �1 algorithm for single measure-

ment problems. The proposed algorithm (M-IRL1) is demon-

strated to outperform non-reweighted MMV algorithms under

noiseless measurements. A regularization of the M-IRL1 al-

gorithm is also proposed to accommodate noise. The ability

to robustly handle noise is demonstrated through an electro-

magnetic induction application.

Index Terms— Jointly sparse, multiple-measurement

vector, basis pursuit, iterative reweighting.

1. INTRODUCTION

In many estimation problems, the signal of interest has a

sparse representation in a specific basis. Furthermore, in

some problems, the sparse representations of a set of signals

are jointly sparse, having their nonzero elements occurring

at the same entries. Such problems arise in neuromagnetic

imaging [1], equalization of sparse communication chan-

nels [2], and electromagnetic induction (EMI) [3]. In these

problems, a set of L measurements b(l) ∈ R
m can be modeled

as

b(l) = Ax(l) l = 1, . . . , L, (1)

where A ∈ R
m×n is the dictionary matrix and x(l) ∈ R

n

are jointly sparse vectors. The system of equations (1) is also

known as the multiple-measurement-vector (MMV) problem

and is often written as

B = AX , (2)

where the matrix B ∈ R
m×L is the collection of b(l) and like-

wise for X ∈ R
n×L, which is row-sparse – having nonzero

entries in only a few rows. When L = 1, we have the single-

measurement vector problem (SMV), which has been widely

studied.
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Several MMV recovery methods were proposed in recent

years. Most of the methods are extensions of existing SMV

recovery methods. Extension of the Basis Pursuit (BP) to the

MMV problem is considered in [1, 4], where the objective is

to minimize the number of rows containing nonzero entries

while satisfying (2). The problem can be formulated as

min ||R�q (X)||0 s.t. B = AX , (3)

where R�q (X) is a vector in R
n whose ith entry is the �q vec-

tor norm of the ith row of X , and || · ||0 is number of nonzero

entries in a given vector. As in the SMV problem, (3) is NP-

hard but can be convexified as an �1 minimization problem:

min ||R�q (X)||1 s.t. B = AX . (4)

When the nonzero rows in X are sparse enough, (4) recov-

ers the same solution as (3). The condition for which (3)

and (4) are equivalent can be found in [1, 4]. It was also

shown that an exact recovery does not depend on the �q norm

chosen for R�q . On the other hand, greedy algorithms have

also been extended to accommodate MMV problems [5, 6,

7]. Various MMV methods based on Matching Pursuit (MP)

were proposed, such as the MMV orthogonal matching pur-

suit (M-OMP). The condition for exact recovery was also es-

tablished [1, 5].

From a slightly different approach, it is proposed in [8] the

framework, ReMBo, that solves a MMV problem by recasting

it into a series of SMV problems. The framework can incor-

porate both convex relaxation and greedy algorithms, and is

shown to be robust.

Sparsity could be further enhanced through iteratively

reweighting. In particular, it was shown in [9, 10] that sparse

solutions for a SMV problem can be found via iterative

reweighted least-squares (IRLS), with which the FOCUSS

algorithm [11] is identified. A M-FOCUSS algorithm that ex-

tends FOCUSS to the MMV problem was introduced in [10].

In addition, it was also shown in [12] that sparse solutions can

be obtained via an iterative reweighted �1 algorithm (IRL1),

as a result of minimizing a log-sum objective function.

Adopting the reweighting scheme, we propose a MMV

method (M-IRL1) that iteratively reweights the M-BP algo-

rithm. The proposed method can be seen as a natural MMV
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extension of the IRL1 algorithm, just as M-FOCUSS is a nat-

ural extension of the FOCUSS (IRLS) algorithm. We also

propose a regularized version of M-IRL1.

The paper is organized as follows: In Section 2, the pro-

posed algorithm is presented, and the relationship of M-IRL1

to M-FOCUSS is discussed. In Section 3, the behavior of

the proposed algorithm is examined using noiseless and noisy

data. It is observed that through reweighting, the proposed al-

gorithm outperforms M-BP, as well as other MMV methods.

It is also demonstrated that the proposed method performs

well, and better than M-FOCUSS, in the application of EMI

spectrum estimation.

Notation: The remaining sections use the following notation:

R�q (X) = [v1, . . . , vn]
T , (5)

where vi =

(
L∑

l=1

|xi,l|q
)1/q

(6)

and xi,l are the entries of the matrix X .

2. METHOD

To obtain row-sparse solutions, we choose an objective func-

tion that penalizes non-row-sparse answers. The log-sum

function is a closer approximation to the �0 quasi-norm than

the �1 norm, so it better promotes sparsity. As shown in

Fig. 1, the log-sum function has a slope that vanishes near the

axes like || · ||0 does. On the other hand, the �1 norm is less

similar to the �0 quasi-norm. Other functions have also been

suggested to better approximate the �0 quasi-norm [9, 12, 13].

We propose to approximate (3) by minimizing the log-

sum objective function on the norm of the rows:

argmin
X

n∑
i=1

log (vi + ε) s.t. B = AX , (7)

where ε > 0 is a small positive real number introduced for

stability. Recall that vi ≥ 0 are the entries of R�q (X), the

�q-norm of the rows of X defined in (6). For simplicity, we

consider the case q = 1.

Following the reweighting scheme in [12], we can solve (7)

with an iterative algorithm that we call M-IRL1:

Step 1) Initialize count k = 0 and w
(0)
i = 1, i = 1, . . . , n.

Step 2) Solve the weighted �1 minimization problem

X(k) = argmin
X

||W (k)R�1(X)||1 s.t. B = AX ,

where W = diag[w1, w2, . . . , wn]. (8)

Step 3) Update the weights:

w
(k+1)
i =

1

v
(k)
i + ε

, i = 1, . . . , n. (9)

Step 4) Terminate on convergence or when k reaches a speci-

fied maximum number of iterations kmax. Otherwise, iterate

from Step 2.

While (7) better promotes sparsity, it is nonconvex and

a unique solution is not guaranteed. The proposed M-IRL1

method can be trapped in local minima. However, when an

initial point is properly chosen, the algorithm does converge

to the global minimum, as shown empirically in Section 3.

The proposed method converges as argued in [13].

2.1. Algorithm Justification

We show a justification of the proposed method. A similar

derivation is found in [12], which is the following with L = 1.

In (7), we substitute for vi using (5):

argmin
X

n∑
i=1

log

(
L∑

l=1

|xi,l|+ ε

)
s.t. B = AX . (10)

The minimization in (10) is equivalent to

argmin
s

n∑
i=1

log

(
L∑

l=1

ui,l + ε

)
s.t. s ∈ C, (11)

where s = (X,U) and C is the convex set {(xi,l, ui,l) |B =
AX and |xi,l| ≤ ui,l}.

Recognizing the objective function in (11) is concave,

which is below its tangent, a guess s(k) ∈ C can be improved

by minimizing a linearized objective function around s(k):

s(k+1) =argmin
s

g(s(k)) +∇g(s(k))(s− s(k)) s.t. s ∈ C,

where g(s) =

n∑
i=1

log

(
L∑

l=1

ui,l + ε

)
. (12)

It can be readily shown that

∂g

∂ui,l
=

(
L∑

l=1

ui,l + ε

)−1

. (13)

From (12) and (13), we obtain

(X(k+1), U (k+1)) = argmin

n∑
i=1

∑L
l=1 ui,l∑L

l=1 u
(k)
i,l + ε

s.t. B = AX and |xi,l| ≤ ui,l, (14)

which is equivalent to

X(k+1) = argmin

n∑
i=1

∑L
l=1 |xi,l|∑L

l=1 |x(k)
i,l |+ ε

s.t. B = AX .

Using (5), we obtain

X(k+1) = argmin

n∑
i=1

vi

v
(k)
i + ε

s.t. B = AX . (15)

The iteration and weights in (15) define the proposed algo-

rithm.
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Fig. 1. Surface plots of various (quasi-)norms in R
2. (a) �0 quasi-norm. (b) �1 norm. (c)

∑
log(|xi|+ε). (d) �1/2 quasi-norm [9].

2.2. M-IRL1 in relation to M-FOCUSS

Both the proposed method and M-FOCUSS promote sparsity

by iterative reweighting. In this section, we examine the rela-

tion between the two.

The M-FOCUSS algorithm [5] derives its weights from

minimizing the following diversity measure (e.g., Fig. 1(d)):

J (p)(X) = ||R�2(X)||pp =

n∑
i=1

(vi)
p, 0 ≤ p ≤ 1. (16)

By solving the Euler-Lagrange equation derived from (16),

the iterative reweighted least-squares is obtained:

X(k) = W̃ (k)AT (AW̃ (k)AT )−1B, (17)

where W̃ =diag[w̃1, . . . , w̃n], and the weights are updated by

w̃
(k+1)
i =

(
v
(k)
i

)p−2

. (18)

The weights are updated similarly to that of the proposed

method (9).

While similar, the two methods differ in that M-FOCUSS

minimizes the diversity measure (16) and results in a reweighted

least-squares method. While M-IRL1 minimizes the log-sum

function (7) and results in a reweighted �1 minimization prob-

lem. Nonetheless, both methods are instances of a general

iterative sparsity enhancing algorithm proposed in [13]. Both

deliver robust performance, and can be regularized to ac-

commodate noisy measurements, as shown in the following

section.

It can be shown that when p = 0, M-FOCUSS effectively

minimizes the log-sum objective [9], as with M-IRL1. In this

case, iterations on (17) and (18) lead to minimizing a log-

sum with summand entries of R�2 . However, when regular-

ized, M-FOCUSS (p = 0) and M-IRL1 have different objec-

tives because of the regularization introduced at each itera-

tion. Simulations show differences in the performance of the

two algorithms, see Fig. 3.
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Fig. 2. Performance of MMV methods under noiseless data,

including M-IRL1 and two M-FOCUSS cases.

3. NUMERICAL EXPERIMENTS

The proposed method is tested on noiseless and noisy data.

M-IRL1 is found to provide a robust exact recovery rate for

noise-free data. Also, a regularized M-IRL1 is shown to ac-

commodate noisy data in the context of an EMI application.

We choose kmax = 20 and ε = 10−6.

3.1. Noiseless Data

We proceed with a numerical experiment investigating the be-

havior of the proposed M-IRL1 algorithm. Other methods

considered for examination include M-BP [1], M-OMP [1],

M-FOCUSS [5], and ReMBo (with BP) [8].

We choose, m = 20, n = 30, and L = 5. The entries of

the real-valued matrix A are i.i.d. Gaussian with zero mean

and variance one. The multiple-measurement vectors are con-

structed by B = AX0 where X0 has N rows with nonzero

entries. The locations of the N rows are selected uniformly at

random, and the nonzero entries of X0 are drawn as in A. The

above simulation is repeated 500 times per MMV method.

The empirical rate of exact recovery for different N is

shown in Fig. 2. If we concentrate on very high recovery rates

above 0.95, then M-IRL1 and both M-FOCUSS cases achieve

the same recovery rate for N ≤ 13. For N > 13, M-IRL1

exhibits performance comparable to M-FOCUSS (p = 0), the

IRLS counterpart of the proposed method.
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Fig. 3. Performance under noisy EMI measurements.

3.2. Noisy Data

We consider recovery from measurements corrupted by addi-

tive white Gaussian noise:

B = AX + i.i.d. Gaussian noise.

To handle the noise, we regularize (8):

X(k+1) = argmin
X

||WR�1(X)||1 + λ||AX −B||F , (19)

where λ is a regularization parameter, and || · ||F is the Frobe-

nius norm. The selection of λ can be found via a cross-

validation-like experiment for each specific applications, i.e.,

for each matrix A [14].

We demonstrate the performance of the regularized M-

IRL1 in the application of spectrum estimation in EMI [3]. In

this case, the matrix A has the structure

A =

⎡
⎢⎢⎢⎢⎣
1 1−jω1/ζ1

1+jω1/ζ1

1−jω1/ζ1
1+jω1/ζ2

. . .

1 1−jω2/ζ1
1+jω2/ζ1

1−jω2/ζ2
1+jω2/ζ2

. . .
...

...
...

. . .

1 1−jωm/ζ1
1+jωm/ζ1

1−jωm/ζ2
1+jωm/ζ2

. . .

⎤
⎥⎥⎥⎥⎦ ,

where ω is the angular frequency and ζ the relaxation fre-

quencies. We choose m = 20, n = 50, L = 5, and N = 3.

The matrix B and X0 are generated in the same way as the

noiseless case. Because of the noise, it is difficult to perfectly

recover X0. In the noisy case, we declare a “perfect recovery”

when all the N selected columns of A are correctly identified.

The empirical perfect recovery rate at different signal-to-

noise ratios is shown in Fig. 3. The SNRs chosen are seem-

ingly high, but fall in the normal range for the application of

EMI sensors [3], where the estimation is sensitive to pertur-

bation of the highly correlated columns of A. Both regular-

ized M-IRL1 and M-FOCUSS are shown to robustly handle

noise. The regularization parameter for M-FOCUSS is found

via the same cross-validation-like technique described in [14].

The proposed M-IRL1 algorithm has higher exact recovery

rates compared to M-FOCUSS, for this case. However, the

M-FOCUSS algorithm takes less computation time. As a fi-

nal comment, we note that regularized M-IRL1 has also been

successfully applied to data taken in laboratory experiments

and field tests.

In conclusion, we have shown that reweighting has ad-

vantages in recovering sparse signals using MMV problems.

Though the noisy-data simulation presented is EMI specific,

the proposed M-IRL1 method should be useful in other appli-

cations, such as the ones mentioned in Section 1.
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