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ABSTRACT

In this paper, we introduce the concept of smoothness for signals
supported on the vertices of a graph. We provide theoretical expla-
nations when and why the Laplacian eigenbasis can be regarded as
a meaningful “Fourier” transform of such signals. Moreover, we
analyze the desired properties of the underlying graphs for better
compressibility of the signals. We verify our theoretical work by
experiments on real world data.

Index Terms— Graph Laplacian, Fourier transform, smooth-
ness, compressibility

1. INTRODUCTION

Signals on graphs are now common in various applications of differ-
ent areas including biology, network monitoring and the smart grid.
For example, in field estimation [1, 2], a huge number of wireless
sensors are distributed randomly in a field to collect measurements,
such as temperature or solar radiation, where the whole sensor net-
work can be modeled as a random geometric graph. In computer
graphics, the shape of a 3D object can be approximated by a regular
graph, with its nodes containing the coordinate information [3, 4].
In the traditional realm of signal processing, we are interested in ap-
proximating a certain function by a simpler one and approximation
theory has been well developed. So far the approximation theory has
focused on 1D signals and 2D images while less work has consid-
ered signals on graphs. So a general question one might ask is: how
can we approximate signals supported on graphs?

To address this problem, first let us delve into the traditional ap-
proximation theory. It is well known that the Fourier transform plays
a core role in this area. Moreover, the idea that any arbitrary periodic
function can be represented as a series of harmonically related sinu-
soids has a profound impact in mathematical analysis, physics, and
engineering. In signal processing, it has been shown that a smooth
signal can be well approximated by a small portion of its Fourier
coefficients because of the compressibility. Thus our question be-
comes more specific: can we find a “Fourier transform” for signals
on graphs? In academia, it has been believed for quite a while that
the eigenbases of a Laplacian matrix can be deemed as the Fourier
basis for its corresponding graph. In this paper, we denote it as the
Graph Fourier Transform (GFT). Furthermore, there have already
existed certain applications which utilize the GFT in data compres-
sion [3, 5], signal denoising [6] or compressed sensing [7]. How-
ever, none of them provides a detailed theoretical analysis on why
the graph Laplacian eigenbases can be regarded as the Fourier trans-
form of graphs. Nor do they discuss whether the Laplacian eigen-
vectors are meaningful basis vectors for all graphs.

In this paper, we address issues. We first generalize the concept
of smooth signals and define a metric to measure the smoothness
of a graph signal. Later, we derive certain properties of the GFT.

Those properties imply that if the eigenvalues of the graph Laplacian
roughly maintain an increasing trend, then the smooth signals on that
graph are likely to be compressible.

The rest of this paper is organized as follows: In section 2, the
concept of smooth signals on graphs is defined and we derive certain
properties of the GFT. Based on those properties, we give some rules
of thumb for generating graphs where the signal is compressible. In
section 3, we conduct experiments on real world data to verify our
theory about the GFT. Finally, a conclusion is made in section 4.

2. THE GRAPH FOURIER TRANSFORM

2.1. Properties of the Fourier Transform

The Fourier transform is a mathematical operation that decomposes
a signal into its constituent frequencies. It plays an important role
in signal processing. In this subsection, we will review some of the
important properties of the Fourier transform.

Definition 1. For a continuous differentiable function f , the total
variation is defined as ‖f‖V =

∫ +∞
−∞ |f ′(t)|dt, where f ′(t) is the

derivative, and ‖f‖V =
∑

n |f(n)− f(n− 1)| for discrete signals.
We say that f has bounded variation if ‖f‖V < +∞.

Total variation measures the total amplitude of signal oscilla-
tions. It plays an important role in signal processing since it im-
pacts the decaying behavior of its Fourier coefficients. The following
proposition shows that the total variation affects the decaying upper
bound of the Fourier coefficients.

Proposition 2.1 ([8]). If f(t) is differentiable and f̂(ω) =∫ +∞
−∞ f(t)e−iwtdt denotes its Fourier transform, then |f̂(ω)| ≤

‖f‖V
|ω| .

In the theoretical analysis of approximation theory[8], we of-
ten consider a signal f to be square integrable over [0, 1], we can
decompose a signal f(t) =

∑+∞
m=−∞ |〈f(u), ei2πmu〉|ei2πmt with

〈f(u), ei2πmu〉 = ∫ 1

0
f(u)e−i2πmudu, the M-term Fourier approx-

imation is fM =
∑

|m|<M/2 |〈f(u), ei2πmu〉|ei2πmt.

Definition 2. M-term Linear Fourier Approximation Error: εl(M, f) =∑
|m|>M/2 |〈f(u), ei2πmu〉|2.

Linear approximation keeps the M lowest frequency compo-
nents while discarding the rest.

Theorem 2.2 ([8]). If ‖f‖V < +∞, then εl(M, f) = O(‖f‖V M−1).

Theorem 2.3 ([8]). For any s > 1/2, if
∑+∞

m=0 |m|2s|〈f, gm〉|2 <
+∞ where gm is the mth vector from a certain orthogonal basis,
then εl(M, f) ∼ o(M−2s).
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The theorems above describe the decay rate of Fourier coeffi-
cients and the behavior of linear approximation error. It is worth
noting that Theorem 2.1 is consistent with the fact that a smooth sig-
nal is likely to be compressible in the Fourier domain. Theorem 2.2
shows that the linear approximation error is upper bounded by total
variation and thus signals with small total variation will result in less
linear approximation error. Theorem 2.3 highlights that the linear
approximation error depends on the decay rate of |〈f, gm〉|. In the
next several subsections, we show that all the three theorems above
have similar versions for the GFT.

2.2. Towards the Graph Fourier Transform

Signals supported on graphs are fairly common in real applications.
If given a graph G(V,E) and a signal f , we say that f ∈ R

V if the
entries of f are supported on the vertices of G.

Since the topology of an underlying graph is crucial to the sig-
nals supported on it, we need some tools to analyze the graph topol-
ogy. For an undirected, unweighted graph G = (V,E), which con-
sists of a set of edges E and a set of vertices V , the adjacency matrix
A of G is the N ×N matrix with entries

Ai,j =

{
1 : if there is an edge between vertex i and j
0 : otherwise

and N is the number of nodes. The degree of vertex i, denoted by
di, is the number of all the edges incident to it. Let the degree matrix
D have diagonal elements equal to the degrees, and zeros elsewhere.
The non-normalized graph Laplacian is defined as: L = D −A.

An interesting fact has been noticed for a long time: that the
1-D ring and the 2-D grid are examples of circulant graphs and it
is well known that the Discrete Fourier Transform(DFT) produce an
eigenbases of all circulant matrices[9], i.e., the Laplacian eigenba-
sis of any circulant graph is exactly the DFT basis. This might be
a starting point for some scholars to relate the Laplacian eigenba-
sis to the “Fourier” transform of graphs. Naturally, one might ask:
Is it possible for graphs with more general structures to have sim-
ilar properties of the Fourier transform? The following subsection
considers this issue.

2.3. Properties of the Graph Fourier Transform

One vital concept closely related to the Fourier transform is the
smoothness of signals since smooth signals have compressible
Fourier coefficients; i.e., the sorted magnitude of Fourier coeffi-
cients exhibits a power law decay. Hence, we can keep a small
portion of the large ones to approximate the signal while discarding
all the others. Similarly, for our case, the very first notion we need
to figure out is the smoothness of signals on graphs. Karni and Gots-
man [3] argue the smoothness for spectral compression is when “the
coordinates of a vertex are very close to the average coordinates of
its neighbors.” Their work is limited to coordinates on meshes while
we care about more general graphs and signals. Accordingly, we
extend this notion to “the value associated with a vertex is very close
to that of its neighbors”. More concretely, the following definition
of 2-norm graph total variation describes the overall smoothness of
a signal.

Definition 3. 2-norm Graph Total Variation: Given a signal f ∈
R

V , ‖f‖G = (fTLf)1/2 = (
∑

i∼j wij(f(i) − f(j))2)1/2, where
i ∼ j means there exists an edge between node i and node j.

The 2-norm graph total variation describes the smoothness of a
signal defined on graph vertices. The smaller graph total variation a

signal has, the smoother the signal is on the graph. Zhu et al. [10]
also mention that fTLf measures the smoothness of f on the graph.

Definition 4. We say that f ∈ R
V has a bounded variation if we can

find a positive C 	 λN−1 such that ‖f‖2G ≤ C‖f‖2, where λN−1

is the largest Laplacian eigenvalue of the underlying graph. Bounded
variation can also be defined for graphs with an infinite number of
nodes: if ‖f‖G < +∞, then f has a bounded variation.

Although there exists no infinitely large graphs in real world,
discussing the properties of such graphs can provide certain implica-
tions about the behavior of large graphs. Actually, the bounded vari-

ation for infinitely large graphs implies
∑+∞

i=0 λi|f̂(λi)|2 < +∞,

which gives lim
i→∞

λi|f̂(λi)|2 = 0. Hence, a graph signal with

bounded variation doesn’t necessarily have decaying GFT co-
efficients. For example, if we consider a complete graph here,

|f̂(λi)| → 0 since λi → +∞, where i = 1, 2, · · · , i.e., signals only
contains DC component can be considered smooth for complete
graphs.

Now let us define the linear and non-linear approximation error
for the GFT, they are similar to those of the Fourier transform.

Definition 5. M-term Linear Approximation Error: εl(M, f) =∑N−1
i=M |f̂(λi)|2, where f̂(λi) = 〈f, ui〉 denotes the GFT coeffi-

cient of signal f , where ui is the ith eigenvector of the Laplacian
matrix of graph G.

Definition 6. M-term Non-linear Approximation(Best M-term Ap-

proximation) Error: εn(M, f) =
∑

i/∈Ω |f̂(λi)|2, where Ω corre-
sponds to the set of indices of the M largest graph Fourier coeffi-
cients in magnitude.

The following theorems describe the properties of the graph
Fourier.

Theorem 2.4. Given a signal f ∈ R
V on vertices of a graph

G(V,E), let λi denote the ith eigenvalue of the Laplacian matrix
L and f̂(λi) denotes the ith GFT coefficient of the signal f . Then,
|f̂(λi)| ≤ ‖f‖G√

λi

.

Proof Sketch: It is straightforward to see that λi|f̂(λi)|2 ≤∑N−1
i=0 λi|f̂(λi)|2 = fT (

∑N−1
i=0 λiuiu

T
i )f = fTLf = ‖f‖2G,

where ui is the ith eigenvector of the Laplacian matrix L. �
Compared with Proposition 2.1, Theorem 2.4 implies the eigen-

values of the graph Laplacian plays the same role as “frequencies”
in traditional signal processing. λ0, · · · , λN−1 correspond to the
graph Fourier coefficients from the lower frequencies to the higher
frequencies. Accordingly, the eigenvectors of the Laplacian are ac-
tually the “frequency” components of a graph. The next theorem
discusses the bound for linear approximation error.

Theorem 2.5. Consider a graph G with a signal f ∈ R
V on it. If f

has a bounded variation, then for adequately large M :

εl(M, f) ≤ ‖f‖2Gλ−1
M

Proof Sketch: Notice that
∑N−1

i=M λi|f̂(λi)|2 ≤ ∑N−1
i=0 λi|f̂(λi) =

‖f‖2G and εl(M, f) =
∑N−1

i=M |f̂(λi)|2, we can relax the above con-
ditions and consider the optimization problem:

max

N−1∑
i=M

x2
i s.t.

N−1∑
i=M

λix
2
i ≤ ‖f‖2G (1)
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By solving this problem, we obtain its solution x∗
M = ‖f‖2Gλ−1

M

and x∗
i = 0 for all i = M + 1, · · · , N − 1. Thus,

∑N−1
i=M (x∗

i )
2 is

clearly an upper bound for εl(M, f). Since ‖f‖2 also upper bounds
εl(M, f), εl(M, f) ≤ min{‖f‖2, ‖f‖2Gλ−1

M }. Due to the bounded
variation condition, we have ‖f‖2Gλ−1

M ≤ C
λM

‖f‖2. Since C 	
λN , we can always find λM > C for adequately large M such that
‖f‖2Gλ−1

M < ‖f‖2. �
This statement corresponds to Theorem 2.2 for Fourier trans-

form. From Theorem 2.5, the upper bound of the linear approxima-
tion error is related to both the eigenvalue and the graph total vari-
ation. It implies that if the eigenvalues keep strictly increasing, the
linear approximation error will have the decaying property. More-
over, the linear approximation error is also affected by the graph total
variation ‖f‖G; i.e., bounded ‖f‖G results in smaller linear approx-
imation error. This is consistent with our intuition that a smoother
signal tends to be better linear-approximated.

Lemma 2.6. Consider a signal f ∈ R
V on a connected graph:

N−1∑
i=0

λi|f̂(λi)|2 ≤
N−1∑
M=0

λM εl(M, f) ≤
N−1∑
i=0

iλi|f̂(λi)|2.

If we consider a graph G with infinite number of nodes, then

+∞∑
i=0

λi|f̂(λi)|2 ≤
+∞∑
M=0

λM εl(M, f) ≤
+∞∑
i=0

iλi|f̂(λi)|2.

Proof. Notice the fact that
∑N−1

M=0 λM

∑N−1
i=M |f̂(λi)|2 =∑N−1

i=0 |f̂(λi)|2(∑i
M=0 λM ), which immediately gives the inequal-

ity of left hand. Moreover, since λn ≤ λm for all n ≤ m , we obtain
the upper bound.

Theorem 2.7. Given a graph G with infinite nodes, if∑+∞
i=0 iλi|f̂(λi)|2 < +∞, then the M term linear approximation

error:
εl(M, f) = o(

1

MλM/2

).

Proof. From the second statement of Lemma 2.6, we notice that

εl(M, f)

M−1∑
m=M/2

λm ≤
M−1∑

m=M/2

λmεl(m, f) (2)

≤
+∞∑

m=M/2

λmεl(m, f) (3)

≤
+∞∑
i=0

iλi|f̂(λi)|2. (4)

The first inequality holds due to the fact εl(M, f) ≤ εl(m, f) for all

m ≤ M . Since
∑+∞

i=0 iλi|f̂(λi)|2 < +∞, we have∑+∞
m=M/2 λmεl(m, f) < +∞. Thus,

lim
M→∞

+∞∑
m=M/2

λmεl(m, f) = 0. (5)

Moreover, it is clear that M
2
λM/2 ≤ ∑M−1

m=M/2 λm, Accord-
ingly, Eq.2, Eq.3, along with Eq.5 implies that

lim
M→∞

MλM/2εl(f,M) = 0.

Theorem 2.7 along with Lemma 2.6 describe the behavior of
the linear approximation error of graphs with infinite number of
nodes when its eigenvalues are strictly increasing. The condition∑+∞

i=0 iλi|f̂(λi)|2 < +∞ implies |f̂(λi)|2 = o( 1
iλi

), which is

stronger than the bounded variation condition. Then, similar decay-
ing rate of o( 1

MλM/2
) is guaranteed for linear approximation error.

The above theorems provide us with some implications about
what signals on what graph are likely to be compressible on the cor-
responding graph Fourier domain. To sum up, there are two main
principles: First, from the perspective of signals, we need a smooth
signal on the underlying graph, i.e., ‖f‖G is small since it controls
the upper bound of linear approximation error. Second, from the per-
spective of the underlying graphs, the Laplacian eigenvalue of the
graph must have an increasing trend roughly in order for the graph
Fourier coefficients to decay.

2.4. Obtaining Compressible Signal by Proper Graph Con-
struction

Given a signal f ∈ R
N , what graph leads to a GFT basis of best

compression for f? The properties of the GFT provide us with cer-
tain implications of this question. First, each entry in f can be re-
garded as a node allocated one value. From Theorem 2.4 and its
corollary, we desire smooth signals on graphs; i.e., ‖f‖G should be
kept small enough. One possible solution to this problem is to ex-
ploit ε−graph or K-nearest-neighbor(KNN) graphs. An ε−graph is
generated by connecting the nodes whose distance is smaller than ε
and a KNN graph is constructed by connecting each nodes’ K near-
est neighbors. More concretely, we construct the graph by putting
an edge between the nodes which are likely to share similar values
so that (

∑
i∼j wij(f(i)− f(j))2)1/2 is kept small. The next ques-

tion is how do we choose K or ε. From the perspective of ‖f‖G,
we prefer the parameters to be small since fewer edges will result in
smaller ‖f‖G. Moreover, we should avoid constructing a complete
graph. Hence, the parameters shouldn’t be too large. On the other
hand, if the value of K or ε is selected to be too small, the connec-
tivity of the graph will be weak and the eigenvalues corresponding
to low frequencies might be equal to or close to 0. Such behavior
contradicts the increasing trend of eigenvalues that we desire. Thus,
the graph we construct should at least be a connected one.

For most of the time, we might not be able to know the prior
information about the exact distribution of the signal f but we can
construct the graph based on other information. For example, in field
estimation, it is fairly reasonable to assume the value of nodes is
highly correlated to its location, i.e., the nodes who are close to each
other geographically are likely to have similar readings. Hence, we
can build the graph based on the location information.

3. EXPERIMENT RESULTS

3.1. Experiment Setup

In this section, we investigate the performance of the GFT on the
data from California Irrigation Management Information System
(CIMIS) [11]. This dataset is generated by weather stations around
the state of California. We use the solar radiation data for one day
which contains 135 readings from different weather stations. We
utilize KNN graphs based on the geological information of weather
station to build its GFT basis.

We will compare the performance of compressed sensing
[12, 13], linear approximation and non-linear approximation on
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this dataset. For compressed sensing, we randomly select a num-
ber of the readings from the sensor nodes as the measurement and
use LASSO in graph Fourier basis as the decoding algorithm. All
the experiments are repeated 50 times and the average values are
reported.
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Fig. 1. Performance of Compressed Sensing, linear approximation
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Fig. 2. Performance of Compressed Sensing with different graph
Fourier basis. M is the number of measurements. X axis shows the
number of neighbors we use to formulate a symmetric KNN graph.

3.2. Results

Fig 1 illustrates the performance of CS, linear approximation and
non-linear approximation with increasing compression rate when we
set the parameter K = 7 to construct the underlying graph. The
compression ratio is defined as M

N
, where M is the number of mea-

surements and N is the dimension of signal. Distortion is calculated
with Mean Square Error(MSE). It is well implicated that the non-
linear approximation outperforms the other two methods, while lin-
ear approximation performs a little bit better than Compressed Sens-
ing. All of the results in this figure show a rapid decaying behavior

of MSE, which verifies that we can obtain a GFT basis where the
original signal is compressible by proper graph construction.

Fig 2 describes explicitly how the connectivity of a graph affects
the performance of compressed sensing. The result agrees with our
earlier discussion about the choice of parameter K. Given a con-
stant compression rate, the best performance of Compressed Sens-
ing appears when K is in the range 5–10. When K is smaller than
5, the graph is unconnected with high probability. In this case, we
have multiple zero eigenvalues. When K become larger than 30,
the graph approximate the complete graph, which also gives a poor
compressibility.

4. CONCLUSION

This paper analyzes a concept of the GFT. To the best of our knowl-
edge, this is the first work to address why we can compress signals
on the graph Fourier domain and what conditions the graph and sig-
nals should hold. We define the smoothness of signals supported on
graphs and show its impact on the linear approximation. The GFT
extends the conventional approximation theory to signals on graphs.
We believe it has a lot of potential applications in the realm of sensor
networks, computer graphics and compressed sensing.
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