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ABSTRACT

While Markov random field (MRF) models have been widely used
in the solution of inverse problems, a major disadvantage of these
models is the difficulty of parameter estimation. At its root, this
parameter estimation problem stems from the inability to explicitly
express the joint distribution of an MRF in terms of the conditional
distributions of elements given their neighbors. The objective of this
paper is to provide a general approach to solving maximum a poste-
riori (MAP) inverse problems through the implicit specification of a
MRF prior. In this method, the MRF prior is implemented through a
series of quadratic surrogate function approximations to the MRF’s
log prior distribution. The advantage of this approach is that these
surrogate functions can be explicitly computed from the conditional
probabilities of the MRF, while the explicit Gibbs distribution can
not. Therefore, the Gibbs distribution remains only implicitly de-
fined. In practice, this approach allows for more accurate modeling
of data through the direct estimation of the MRF’s conditional prob-
abilities. We illustrate the application of our method with a simple
experiments of image denoising and show that it produces superior
results to some widely used MRF prior models.

Index Terms— Markov random fields, Inverse problems, Max-
imum a posteriori estimation.

1. INTRODUCTION

Model-based inversion methods, first introduced decades ago for the
solution of ill-posed inverse problems [1] have continued to gain im-
portance as their value in the solution of difficult and widely used in-
verse problems grows [2, 3, 4]. A classical approach to model-based
inversion is the computation of the maximum a posteriori (MAP)
estimate which is given by

x̂ = arg max
x≥0
{log p(y|x) + log p(x)} ,

where p(y|x) is the forward model of the data vector y given the
unknown vector x, and p(x) is the prior model for x. In many im-
portant applications, x is an image or 3D volume and p(x) is a prior
model for the image.

Model-based inversion approaches have been enormously valu-
able in applications such as 3D reconstruction from X-ray computed
tomography (CT) data [5]. A great advantage of model-based in-
version methods is that they allow for the explicit incorporation of a
forward model. However, a challenge is that they require the adop-
tion of an explicit, tractable, and accurate prior model p(x). Perhaps
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Fig. 1. The Hammersley-Clifford theorem states that X is an MRF
with a strictly positive density if and only if it has a Gibbs distribu-
tion. However, the value of this very important theorem is limited by
the fact that there is generally no tractable method to construct the
Gibbs distribution from the conditional distributions.

the most common choice of prior model has been the Markov ran-
dom field (MRF) because it limits the dependencies in x so that

pθ(xs|xr r �= s) = pθ(xs|x∂s) ,

where xs is an element of x, ∂s is the index set for the neighbors
of s, and θ is a parameter vector which can be used to fit the prior
distribution for specific application at hand.

Unfortunately, the conditional distribution pθ(xs|x∂s) does not
provide an explicit form for the prior distribution pθ(x) of the asso-
ciated MRF.1 The partial solution to this dilemma comes from the
celebrated Hammersley-Clifford Theorem [6] which states that X is
an MRF2 if and only if its distribution can be expressed as a Gibbs
distribution

p(x) =
1

zθ

exp{−uθ(x)}
where uθ(x) is the Gibbs energy function which is formed by a sum
of potential functions over neighborhood cliques, and zθ is the so-
called partition function. However, Figure 1 illustrates the limitation
of the Hammersley-Clifford theorem. While the proof that a Gibbs
distribution is an MRF is constructive, the proof that the MRF must
have a Gibbs distribution with potential functions limited to cliques
is not. Therefore, the Hammersley-Clifford Theorem does not pro-
vide a general trackable method for constructing the Gibbs distribu-
tion from the known conditional distribution, pθ(xs|x∂r). It simply
says that such a mapping exists.

The objective of this paper is to introduce a novel method for the
construction of prior models which is based on direct estimation of
the conditional distribution, pθ(xs|x∂s), of a MRF model. The ad-
vantage of this approach is that it offers the opportunity to construct

1This is in contrast to a Markov chain in which the conditional probabili-
ties can be simply multiplied to form the prior distribution.

2Technically, it must also have a strictly positive density, but in practice
some values of X can occur with extremely low probability.
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Fig. 2. Flow diagram illustrating the operations in MAP estimation
with an implicit prior.

much more informative and accurate prior models through the use of
a wide array of modern methods for the accurate estimation of con-
ditional densities from training data. This is in contrast to traditional
MRF approaches which typically assume a Gibbs distribution with
simple potential functions controlled by a small number of parame-
ters.

In this paper, we introduce a novel approach to computing the
MAP estimate which does not require the Gibbs distribution to be
explicitly computed. Instead, we compute local successive approxi-
mations to the energy function uθ(x) using a surrogate energy func-
tion u(x; x′) where x′ is the point of approximation. As it turns out,
this surrogate energy function can be explicitly computed from the
MRFs conditional probabilities, whereas the underlying Gibbs dis-
tribution remains implicit. The surrogate energy function works in
the same way as widely used majorization methods for optimiza-
tion [7, 8, 9, 10, 11]. The key novelty to our method is in how
we compute the surrogate energy function’s form from the known
(e.g. typically estimated from training data) conditional probabili-
ties, pθ(xs|x∂s). Using this method, we can then compute the MAP
inversion with a nested iteration: Each “outer loop” updates the point
of approximation x′, and each “inner loop” maximizes a surrogate
MAP optimization problem with a quadratic prior term.

2. BAYESIAN INVERSION USING IMPLICIT PRIOR

Our approach to Bayesian inversion with an implicit prior is illus-
trated in Figure 2. First, the conditional distribution, ps(xs|x∂s),
is either estimated from training data or simply selected based on
knowledge of the application. The challenge is then to use this con-
ditional density function as the basis for a prior model in MAP in-
version. To do this, we will use the known conditional density to
compute a surrogate energy function, u(x, x′), with the properties
that

u(x′) = u(x′; x′) (1)

u(x) ≤ u(x; x′) , (2)

where u(x) is the energy function of the MRF’s unknown Gibbs dis-
tribution. Once we obtain this surrogate energy function, we may use
it to iteratively minimize the MAP cost function with the following
procedure.

MAP estimation with implicit prior

1. Initialize x′

2. Repeat until x′ has converged {
(a) Update surrogate energy function u(x; x′)

(b) x′ ← arg min
x

˘− log p(y|x) + u(x; x′)
¯

}

Based on the theory of majorization, it is well known that the two
properties of equations (1) and (2) insure monotone convergence of
the MAP cost function with each iteration of the algorithm.

However, the problem remains of how to determine the surro-
gate energy function, u(x; x′), from the known conditional densities,
ps(xs|x∂s). To do this, we first adopt a surrogate energy function
with the form

u(x; x′) =
1

2
(x− x′)tB(x− x′) + dt(x− x′) + c , (3)

where B is a symmetric matrix, d a column vector, and c a scalar,
all of which are assumed to be functions of x′. We note that the
quadratic form of the function makes solution of the surrogate MAP
optimization problem straightforward using a wide range of standard
optimization methods. Without loss of generality, we can simply
assume that c = 0 because the value of c does not affect the result
of optimization.

The values of the parameter vector d can be easily computed
from the gradient of the conditional densities as

ds = − ∂

∂xs

log ps(xs|x∂s)

˛̨̨
˛
x=x′

. (4)

It only remains to choose the symmetric matrix B sufficiently large
so that u(x; x′) upper bounds the true energy function. However, if
B is chosen to be too large, then convergence of the algorithm will
be slow; so it is best to select a B which represents as tight an upper
bound as possible. Therefore, our approach is to first find strong
necessary conditions that B must satisfy, and then present a method
to compute a matrix B that satisfies these conditions for our specific
choice of the conditional distribution. Once this is done, we can then
scale the magnitude of B or its diagonal as is necessary to insure an
upper bound.

The following three conditions must hold for any matrix B
which satisfies the equations of (1) and (2). (See proofs in [12].)

Condition 1: The symmetric matrix B must be positive definite.
Condition 2: It must be the case that B ≥ H , i.e. B−H must be

a positive semi-definite matrix, where H is the Hessian of the energy
function u(x) at x = x′. Moreover, the elements of H are given by

Hs,r = − ∂2

∂xs∂xr

log ps(xs|x∂s)

˛̨̨
˛
x=x′

. (5)

Condition 3: It must be the case that Bs,s ≥ Ds,s where D is a
diagonal matrix with entries

Ds,s = 2 sup
xs �=x′

s

j− log ps(xs|x′
∂s) + log ps(x

′
s|x′

∂s)−Δsds

Δ2
s

ff

(6)
where Δs = xs − x′

s and ds is from equation (4). Furthermore, it is
the case that Ds,s ≥ Hs,s.

For our particular example, we will use a homogeneous condi-
tional distribution based on a Gaussian mixture distribution (See de-
tails in [12]). In this case, the conditional distribution has the form

p(xs|x∂s) =
X

k

γk√
2πσk

exp

j
− 1

2σ2
k

(xs −Akx∂s − βk)2
ff

,

where Ak is a row vector, βk and σk are constants, and γk =
p(k|x∂s). From this we can compute,

ds =
X

k

1

σ2
k

(x′
s −Akx′

∂s − βk)p(k|x′
s, x

′
∂s) (7)

Hs,r
∼
= H̃s,r =

X
k

1

σ2
k

(δs=r − δs �=rAk,r)p(k|x′
s, x

′
∂s) ,(8)
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where the Hessian is efficiently computed using the approximation
that ∂

∂xr

p(k|xs, x∂s) is small. We also note that it may be the case

that the computed value of H̃ is not symmetric, so we impose sym-
metry by computing H̃ ← (H̃ + H̃t)/2.3

Using the 1D case of the lemma proved in [12], it can be shown
that H̃s,s ≥ Ds,s; so Condition 3 is met. It is important that B
be positive definite (i.e. that Condition 1 holds) in order to insure
that the inner loop is convergent. If this is not the case, then we can
enforce Condition 1 by selecting B so that

B = H̃ + α diag{H̃} , (9)

where diag{H̃} is the positive-definite matrix formed by the diago-
nal of H̃ , and α ≥ 0 is a positive constant. Notice that from the form
of (9) and with the approximation of (8), then Condition 2 is met.

3. EXPERIMENTAL RESULTS

(a) Ground truth image x (b) Noisy image y

Fig. 3. (a) Ground truth image, (b) image with additive white noise
standard deviation σw = 20

In order to compare the implicit prior method against alternative
prior models, we performed simulations for the very simple inverse
problem of removing additive white Gaussian noise from an image
[13]. More specifically, we generated a noisy observed image, y,
from the “ground truth” image x by

y = x + w ,

where w is i.i.d. Gaussian noise with distribution N(0, σ2
w) with

σw = 20. Figure 3 shows the ground truth image x, noisy image
y. The 25 grayscale training images were taken from a set of natu-
ral scene photos, and the ground truth image used in testing was not
contained in the set of training images. The images were captured
by a Nikon D90 camera, the RGB values were converted to the luma
values, and then the images were filtered and subsampled down to
approximately 363 × 288 resolution, so as to be most suitable for
illustrating results in this publication. Parameters of the MRF con-
ditional probability density, p(xs|x∂s), were estimated as described
in [14] using M = 32 and p = 0.50.

In addition to using the implicit prior, we also ran comparisons
with a range of different parameter values for the generalized Gaus-
sian MRF (GGMRF) [15], and with the more general qGGMRF [5]
which represents the current state-of-the-art in MRF priors for in-
verse problems such as tomography. The energy function of the form

3Theoretically, the matrix H should be symmetric. However, in prac-
tice the estimated conditional distribution may not correspond to a consistent
MRF model, so it may be the case that for the Hessian computed using equa-
tion (5), Hs,r �= Hr,s.

is

u(x) =
1

PσP

X
{i,j}

bi−jρ(Δ) (10)

ρ(Δ) =
|Δ|P

1 + |Δ
C
|P−Q

(11)

where Δ = xi − xj , and the parameter constraints are 1 ≤ Q ≤
P ≤ 2 and C is a positive threshold. The sum is over all pairs
{i, j} such that i and j are 8-point neighbors and the coefficients bi

sum to 1, and the ratio of bi/bj =
√

2 when i is a 4-point neighbor
and j is an 8-point neighbor. We used P = 2 and the two values
of Q = 1.0 and Q = 1.2 to illustrate a typical non-Gaussian MRF
prior. If we set P = Q, then this is the form of the generalized Gaus-
sian MRF (GGMRF). In all cases, we adjusted the scale parameter,
σ, to minimize the root mean squared error (RMSE) between the
reconstruction and the ground-truth image.

Figure 4 shows the root mean squared error (RMSE) of the im-
plicit prior method as a function of the number of iterations. The blue
line shows the RMSE between the restored image and the ground-
truth image; and the black lines shows the RMSE between the re-
stored image and the converged result of the algorithm. The plot
indicates that the MAP estimate converges after about 20 iterations.
In practice, smaller values of α tend to result in faster convergence;
however, if α is chosen to be too small then the convergence may not
be robust. In this case, α = 0.45 was larger than necessary, but we
found this value consistently produced robust convergence in a wide
array of examples.

Figure 5 attempts to graphically illustrate the values in the ma-
trix Bs,r after 20 iterations. For a pixel s, the color was set to green
= 255∗Bs,s+(0,−1)/Bs,s and red = blue = 255∗Bs,s+(−1,0)/Bs,s,
where r = s + (0,−1) is the pixel immediately to the left of s, and
r = s+(−1, 0) is the pixel immediately above s. This image shows
how the local weights in the surrogate energy function adapt to the
local edge structure in the image.

Fig. 4. Convergence of RMSE Fig. 5. The matrix Bs,r entry.

Figure 6 shows the comparison of MAP image reconstructions
using the implicit prior and the qGGMRF prior with (P = 2.0,
Q = 1.2) in Figure 6(c), and (P = 2.0, Q = 1.0) in Figure 6(d).
In each case, the threshold C and the regularization σ were chosen
to achieve the minimum RMSE. The implicit prior result is slightly
sharper with slightly better detail than both the qGGMRF cases. This
conclusion is supported by the objective measures of RMSE pre-
sented in Figure 7 where the implicit prior technique has the smallest
value among the three techniques. The RMSE of the qGGMRF prior
technique is plotted as a function of the threshold C while the RMSE
of GGMRF prior technique is plotted as a function of P values. No-
tice that the result of C = 0 for the qGGMRF with P and Q is
equivalent to the result of P = Q for GGMRF because in both these
cases the prior corresponds to the prior term ρ(Δ) = |Δ|P , within
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(a) Ground truth (b) Implicit prior

(c) qGGMRF (P = 2, Q = 1.2) (d) qGGMRF (P = 2, Q = 1.0)

Fig. 6. The image restoration comparison between the implicit prior
technique and qGGMRF prior technique (P = 2, Q = 1.2, C = 0)
and (P = 2, Q = 1.0, C = 1.5). In each case, the threshold C
and regularization parameter were chosen to achieve the minimum
RMSE.

a multiplicative constant. Interestingly, the total-variation prior does
not produce the minimum RMSE reconstruction, but it does achieve
a value near the minimum .

(a) Comparison with GGMRF (b) Comparison with qGGMRF

Fig. 7. These plots compare the RMSE of the implicit prior with
the RMSE of the GGMRF and qGGMRF priors, respectively. Each
plot varies a parameter of the model. In each case, the regularization
parameter was chosen to achieve the minimum RMSE.

4. CONCLUSIONS

We introduce a new method of MAP inversion which allows for the
use of a Gibbs distribution which is only implicitly specified through
the conditional probabilities of an MRF. The advantage of this ap-
proach is that it allows for the use of a much wider range of MRF
models, which can in turn allow for more accurate modeling of data.
The key to our approach is a method for explicitly computing lo-
cal approximation to the energy function of the Gibbs distribution.
These local approximations serve as a series of surrogate energy
functions in the computation of the MAP inversion.

We provide a simple example of image denoising, but the
method is generally applicable to any continuously valued MRF
prior model, and could be combined with more sophisticated meth-
ods for estimation of the MRF’s conditional distribution. Further-
more, the method has the potential for continuous improvement as
methods for estimation of the MRF’s conditional densities improve.
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