
DETECTION OF TARGET MOLECULES USING SURFACE-BASED BIOSENSOR ARRAYS
IN FLUID FLOWS

Maryam Abolfath-Beygi and Vikram Krishnamurthy

Department of Electrical and Computer Engineering
The University of British Columbia, Vancouver, Canada

e-mail: {maryabd, vikramk}@ece.ubc.ca

ABSTRACT

In this paper, the concentration of target molecules in a fluid

flow is estimated using an array of biosensors. The concentra-

tion evolves according to an advection-diffusion partial differ-

ential equation which is coupled with chemical reaction equa-

tions on the biosensor surface. An approximate characteriza-

tion of the system is developed as a system of ordinary dif-

ferential equations by exploiting the multiple-time scale be-

haviour of the system and using the divergence theorem. The

estimate of target molecules is then obtained by solving a non-

linear least squares problem. An explicit expression for the

asymptotic variance of the estimation error is obtained. To

demonstrate the accuracy of proposed method, we illustrate

our results on a novel biosensor built out of protein molecules.

Index Terms— Advection diffusion partial differential

equation, multi-compartment model, protein-based biosensor

array, concentration Estimation, least squares method

1. INTRODUCTION

The concentration of target molecules in a fluid flow over

biosensors evolves according to an advection-diffusion partial

differential equation(PDE) which is coupled with Dirichlet

and Neumann boundary conditions and cannot be solved an-

alytically. Therefore, estimating the concentration is consid-

ered as a challenging parameter estimation problem. More-

over, the measurement equation and the state equation are

mutually coupled since the measurement process affects the

system state since each biosensor grabs target molecules and

changes the concentration in the flow. The main results of this

paper are briefly stated as follows:

1. To facilitate estimation of the concentration of target

molecules, Theorem 3.1 develops an approximation method

to describe the dynamics of the problem by a system of ordi-

nary differential equations (ODEs). The approximate model

is derived by exploiting the multiple time-scale behaviour of

the system and the divergence theorem. The proposed ap-

proximate model in this work is an improved version of the

model in our previous work [1], where a new transport co-

efficient is obtained by using the divergence theorem and a

multiple time-scale approach. Moreover, the order of approx-

imation error is obtained in Theorem 3.1. It is shown that the

obtained approximation error is valid in a certain range of the

response time.

2. A novel biosensor constructed out of protein molecules

is used as an actual example to illustrate our results.

3. The estimation of target molecule concentration is

posed as a parameter estimation problem in terms of the de-

rived ODE model. The estimate is computed numerically

for the novel biosensor via nonlinear least squares method.

It is shown that the estimator is asymptotically normal and

its asymptotic variance is derived. Experimental results are

provided to illustrate the accuracy of the derived expression

for the estimation variance.

The general approach to address the estimation problem in

a distributed system (infinite dimensional systems) is convert-

ing the system description from a distributed-parameter into a

lumped-parameter form by methods for solving partial differ-

ential equations, such as finite-difference method, the finite-

element method, and modal analysis [2]. However, these

methods usually convert the PDE system to a highly nonlin-

ear system of several ODEs, whereas the multi-compartment

model converts the PDE model to only one ODE over each

sensor. The multi-compartment model is developed by ex-

tending the two-compartment model which is used in model-

ing a variety of binding experiments influenced by mass trans-

port [3].

In Sec.2, the PDE model for a biosensor is constructed.

It is then followed by the approximate characterization of the

system by the multi-compartment model in Sec.3 which is

used for estimating the target molecular concentration. Sec.4

presents the results based on protein biosensors and Sec.5

concludes the paper.

2. PDE MODEL FOR THE FLUID FLOW

The aim is to estimate the concentration of target molecules

in a fluid system where the dynamics are described by an

advection-diffusion PDE model.
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Fig. 1: An equally spaced linear array of three biosensors in a rect-

angular flow chamber. The fluid containing target molecules enters

from the left side. The concentration of target molecules at the inlet

is A∗ as expressed in the boundary condition (4).

Consider a flow chamber with a rectangular cross sec-

tion as shown in Fig.1. A flow of target molecules flows

past N identical surface-based biosensors along the length

of the chamber in the y-axis direction. Biosensor i, for i =
1, 2, . . . , N , is located in the range [yi,1, yi,2] along the y-axis

and [0, w] along the x-axis. The inlet of the flow chamber

lies in the xz plane. The dimensions of the flow chamber and

biosensors are:

Flow chamber: Height = h, Length = l, Width = w, (1)

Biosensors: Length = L, Spacing = d,

Biosensor i is located in the range y ∈ [yi,1, yi,2] .

The concentration of target molecules in the flow chamber

(1), denoted by A(t, y, z), is governed by [4]

∂A

∂t
= γ

(
∂2A

∂y2
+

∂2A

∂z2

)
− 4v̄(z/h)(1− z/h)

∂A

∂y
, (2)

A(t = 0, y, z) = 0, y ∈ (0, l), z ∈ (0, h)

Here γ is the diffusion constant of the target molecule and v̄
is the maximum velocity in a fully developed parabolic ve-

locity profile [3] in y direction. When target molecules in the

solution arrive at the biosensors, chemical reactions are initi-

ated which result in a change in impedance that is translated

to change in the measured current. On the surface of biosen-

sor i, the adsorption flux of target molecules is equal to the

rate of consuming target molecules by the reactions which is

described as the following boundary condition:

γ
∂A

∂z

∣∣∣∣
z=0,y∈[yi,1,yi,2]

= R(A(t, y, z = 0), ui(t, y)), (3)

where the vector ui(t, y) contains the values of concentration

of chemical species at time t and location y on biosensor i.
R(A, ui) is the rate of adsorption of target molecules per unit

area on the biosensor. The concentration at the inlet of the

flow chamber is constant during the estimation process and

equal to A∗. The boundary conditions are [4]

A(t, 0, z) = A∗,
∂A

∂y

∣∣∣∣
y=l

= 0,
∂A

∂z

∣∣∣∣
z=h

= 0, (4)

∂A

∂z

∣∣∣∣
z=0,y/∈∪N

i=1[yi,1,yi,2]

= 0.

v

Fig. 2: Four-compartment model for two biosensors.

The dynamics of ui(t, y), for y ∈ [yi,1, yi,2], are described as

dui(t, y)

dt
= G(ui(t, y), A(t, y, 0)), t > ti, ui (ti, y) = u0.

(5)

Here, G(·) is specified by the rate law of reactions on the

biosensor. The response of biosensor i commences at t = ti.
The response of biosensor i at time t for the inlet concentra-

tion A1 is an implicit function of A1 denoted by gi(A1, t). It

can be written that

gi(A1, t) = F (ūi(t)) , ūi(t) =

∫ yi,2

yi,1
ui(y, t) dy

yi,2 − yi,1
. (6)

Here, F (·) is the transducer function which translates the con-

centration quantities on the biosensor to a corresponding elec-

trical signal. The measurement taken at biosensor i at time

ti,k, denoted by mk
i , is

mk
i = gi(A

∗, ti,k) + nk
i , i ∈ {1, 2, . . . , N}. (7)

The noise samples nk
i are independent normally distributed

with zero mean and finite variance σ2.

3. MULTI-COMPARTMENT APPROXIMATION AND
CONCENTRATION ESTIMATION

Given the measurement equation of (7) and the PDE model

of Sec.2, defined by (2)-(5), the aim is to estimate the con-

centration A∗ at the boundary in (4). To estimate A∗ in (4),

a multi-compartment ODE model is introduced that approxi-

mates the PDE by a system of ODEs.

The multi-compartment model is an extension of the ex-

isting two-compartment model for mass transport-binding ex-

periments [3]. Its derivation is based on the multiple time-

scale behaviour of the system [5] and the divergence theorem.

In this model, the flow chamber is partitioned into a series of

two-compartment blocks above biosensors since the concen-

tration in the bulk is varying faster than that in the vicinity of

the biosensor surface. The two-compartment blocks are con-

nected by middle compartments as shown in Fig.2. The con-

centration in the outer compartment above the first biosensor

achieves equilibrium fast and is set equal to the concentration

A∗ at the inlet of the flow chamber. By applying the diver-

gence theorem to the advection-diffusion PDE of (2) in the

outer compartment associated with each biosensor, the con-

centration in the outer compartment above the next biosen-

sor is obtained. The following theorem describes the multi-

compartment characterization. Its proof can be found in [6].
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Theorem 3.1 Consider a flow of target molecules over an
equally spaced linear array of N identical biosensors in
the flow chamber (1). Suppose the concentration of target
molecules at the inlet of the flow chamber is a constant de-
noted by A∗. The concentration of target molecules A(t, y, z)
and chemical species are described by the PDE model (2)-
(5). As γ → 0, there exists a time instant t∗ such that for
t ∈ (ti, t

∗), the dynamics of the average of the surface con-
centration of chemical species on biosensor i, denoted by
ūi(t), satisfies

h0
dāi(t)

dt
=

γ

h0
(Ai − āi(t))−R(āi(t), ūi(t)) +O(γ4/3),

dūi(t)

dt
= G(ūi(t), āi(t) +O(γ2)), t ∈ (ti, t

∗),

āi(ti) = 0, ūi (ti) = u0, i = 1, . . . , N. (8)

Recall γ in (8) denotes the diffusion constant. The concentra-
tion in the flow chamber for y ∈ (yi−1,2, yi,2), z ∈ (h0, h −
h0), and t ∈ (ti, t

∗) can be expressed as A(t, y, z) = Ai +

O(γ). Here h0 is defined as h0 = 1
1.464

[
γhL
v̄

]1/3
. Ai is a

constant obtained by the following recursion:

Ai = αAi−1, i = 2, . . . , N, α = 1− 3γL

2h0v̄h
, A1 = A∗. (9)

The implication of the above theorem is that the multi-

compartment model provides an accurate description of the

dynamics of the concentration of target molecules. In (8),

Theorem 3.1, h0 is the height of the inner compartment

above each biosensor and āi(t) denotes the spatial average

of concentration in the inner compartment of biosensor i.
The non-negative constant Ai denotes the concentration in

the outer compartment of biosensor i. The intuition behind

the relation between Ai and Ai−1 in (9) is that a fraction of

molecules is grabbed by sensor i − 1 and therefore a smaller

amount of concentration arrives at the next biosensor. With

the above multi-compartment characterization, the estimation

of the initial concentration A∗ is formulated as the following

least squares problem for the multi-compartment model:

Â1 = arg min
A1∈R+

S−1

N∑
i=1

S∑
k=1

(
mk

i − gi(A1, t
i,k)

)2
, (10)

where N and S refer to the number of biosensors and the

number of time samples, respectively. In (10), mk
i refers

to mi(t
i,k) which, according to (7), is the measurement of

biosensor i taken at time ti,k. Regarding (6), gi(A1, t
i,k)

is the response of biosensor i at time ti,k which is equal to

F (ūi(t
i,k)). ūi(t) is an implicit function of the initial concen-

tration A1 through the multi-compartment model (8). Thus,

the estimate is the solution of the optimization problem (10)

together with (8). According to (8), there is a common func-

tional relation between the response of each biosensor and the

concentration in its outer compartment expressed as

gi(A1, t) = g(Ai, t− ti) for i = 1, . . . , N (11)

Here, g(Ai, t) denotes the response of each biosensor when
the concentration in its outer compartment is Ai. Recall the

time shift ti in (11), is the response delay of biosensor i.
Based on the results of [7] on the asymptotic properties

of non-linear least squares estimators and Theorem 3.1, it is

proved in [6] that the estimation error Â1 − A∗, obtained by

(10), is asymptotically normal as S → ∞;

√
S
(
Â1 −A∗

)
→ N(0,

σ2

Γ
),

Γ = lim
S→∞

1

S

S∑
k=1

N∑
i=1

α2i−2

[
∂g

∂A
(αi−1A∗, ti,k − ti)

]2
,

where g(A, t), defined in (11), is the response of each biosen-

sor when the concentration in its outer compartment is A.

∂g(αi−1A∗, ti,k − ti)/∂A is the value of ∂g(A, t)/∂A at

A = αi−1A∗ and t = ti,k − ti. The noise variance is denoted

by σ2. Recall that α is defined in (9). The variance of the

estimator Â1 with finite number of samples S and N sensors,

denoted by σ2
S,N , can be approximated as

σ2
S,N ≈ σ2

N∑
i=1

α2i−2
S∑

k=1

[
∂g

∂A
(αi−1A∗, ti,k − ti)

]2 . (12)

4. RESULTS OF A CASE-STUDY: ION CHANNEL
BIOSENSOR

In this section, the multi-compartment model of Sec.3 is eval-

uated for a protein-based biosensor, namely the ion channel

switched (ICS) biosensor that was constructed and described

in [8]. This biosensor incorporates artificial ion channels in

a lipid bilayer. The flow of ions through a channel only oc-

curs when a mobile channel in the outer layer aligns to a fixed

channel in the inner layer to form a conducting dimer. The

arrival of target molecule anchors the channels distant, on av-

erage, from their inner layer partners. The expected number

of dimers is thus decreased. The conductance of the biosensor

is proportional to the concentration of the dimers.

It is shown that the multi-compartment model (8) yields

an excellent approximation to the flow dynamics. To this end,

the response obtained by the multi-compartment model (8),

for an array of ICS biosensors, is simulated using a Rosen-

brock method for solving the ODEs. The response of the

PDE model (2)-(5) is obtained using the COMSOL Multi-

physics software which is based on finite element methods.

The multi-compartment response is then compared with the

PDE response using the normalized error

ei(t) =
∣∣D̄i(t)− D̄ODE

i (t)
∣∣ /D̄i(t), i = 1, . . . , N. (13)

In (13), D̄i(t) is the average dimer concentration on biosensor

i, obtained by the PDE model (2)-(5) and D̄ODE
i (t) is the cor-

responding response from the multi-compartment model (8).
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Fig. 3: The multi-compartment ODE model (8) is compared with the

PDE model (2)-(5) by plotting the normalized error (13) for four

biosensors for A∗ = 10−8 Mol/m3 (a) and A∗ = 10−11 Mol/m3

(b). The flow rate is 10 μL/min. The length of the biosensors is

L = 2 mm and their spacing is d = 1 mm.

Table 1: Comparison between the simulated and approximate value

(12) for the variance σ2
S,N of Â1 (10): The simulated and analytical

values of the standard deviation σS,N/A∗ for S = 300 time samples

are shown. The sampling rate is 1 sample/s. A∗ = 10−8 Mol/m3.

The ratio of initial dimer concentration squared to the noise variance

is equal to 10 dB.
σS,N/A∗

Simulated Analysis (12)

N=1 0.0971 0.0943

N=2 0.0611 0.0651

N=3 0.044 0.051

Fig.3 shows the normalized error (13) versus time for two val-

ues of concentration A∗ = 10−11 and A∗ = 10−8 Mol/m3.

It can be seen that the error during 1000 seconds of simula-

tion time is less than 0.015% for A∗ = 10−11 Mol/m3 and

less than 8% for A∗ = 10−8 Mol/m3. The height and width

of the flow chamber are h = 0.1 mm and w = 2 mm. The

length of each biosensor is L = 2 mm and the spacing be-

tween biosensors is d = 1 mm. The diffusion constant is

equal to γ = 10−6 cm2/s and the flow velocity is 10μL/min.

The results are then compared with the approximate value

(12) for verification. The standard deviation of Â1 for dif-

ferent number of biosensors is shown in Table 1. The vari-

ance is obtained when S = 300 samples with sampling rate

1 sample/s are used for estimation. The actual value of the

concentration is A∗ = 10−8 Mol/m3. The ratio of initial

dimer concentration squared to the noise variance is 10 dB.

5. CONCLUSIONS

In this paper, a multi-compartment approximation model is

introduced by Theorem 3.1 in order to model the dynamics of

a flow of molecules over multiple surface-based biosensors.

The multi-compartment model (8) suggests that the response

of each biosensor has a similar functional relationship with

the concentration at the inlet of the flow chamber. This rela-

tionship is exactly reflected in the expression derived for the

estimation variance in (12). This is an interesting result which

enables us to analyse the estimation improvement obtained

by using multiple biosensors. This capability distinguishes

the multi-compartment method from other efficient methods

such as boundary element methods. In future, the estimation

improvement with multiple biosensors can be optimized by

adjusting the dimensional proportions and biosensor parame-

ters and using the multi-compartment model.
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