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ABSTRACT

Recently, a growing interest in the exploration of the poten-

tial of signal or image processing tools for the purposes of

art analysis has emerged. The wavelet leader based mul-

tifractal analysis consists of a mathematical tool recently

introduced in image processing for the characterization of

homogeneous textures based on their regularity properties.

Here, this novel tool is applied to a set of digitized versions of

drawings, made available by the NY Metropolitan Museum

of Art, consisting of authentic Bruegel drawings and several

imitations. Multifractal attributes are estimated from several

patches of each of these drawings, and their ability to dis-

criminate authentic drawings from impostors is investigated

by means of subspace projections and quadratic discriminant

analysis. Besides showing very satisfactory performance, the

achieved discrimination provides interesting insights into the

differences between the regularity of the textures of authentic

Bruegel drawings versus imitations, potentially relating the

fractal properties of the drawings to the artist’s drawing style.

Index Terms— Bruegel’s Drawings, Forgery Detection,

Texture Analysis, Multifractal Analysis, Wavelet Leaders

1. INTRODUCTION

In a recent past, there has been a growing interest in the inves-

tigation of the potential benefits of the use of image and signal

processing techniques for art analysis. This development has

been driven not only by the ever increasing power of digital

and computational devices, but also by a significant motiva-

tion on the part of art historians and conservators along with

experts in image and signal processing, to bridge the gaps be-

tween these scientific fields.

Notably, an international research program, the Image
Processing for Art Investigation (IP4AI) project, now gath-

ers several international teams from the fields of Image

Processing and of art history, as well as museum cura-

tors (cf. www.digitalpaintinganalysis.org/)

towards this goal. The project includes several museums

who have made available, under certain reproduction restric-

tions, partial high-resolution digitized copies of artwork for

study and technology development and testing. The objective

of such a project is to explore how classical or new image

processing tools may help to measure and quantify various

features of artwork, sometimes called “stylometry,” which

may then be involved in or partially automate an art historical

or conservation task such as classification (e.g., for forgery

detection), or restoration tracking, or dating (e.g., [1] for an

early contribution and [2] for a review article on the topic).

Among the many ways in which computational tech-

niques can be directed toward art analysis, texture classi-

fication represents a particularly relevant approach. Often

in paintings or drawings, small patches consist of homoge-

neous parts representing the texture of a specific subject (e.g.,

landscape, forest, crowds, or skin) rather than its specific

geometry. Interestingly, art experts expect that such patches

of texture may reveal the artist’s hand, that is the character of

the stroke created by the artist (cf. [3] and references therein

for thorough discussions of these matters).

Texture analysis can be conducted in many ways. Here,

we investigate the potential for artwork analysis of texture

characterization via their regularity (or fractal or scale invari-

ance) properties. This can be effectively performed using a

novel formulation of multifractal analysis referred to as the

wavelet leader multifractal formalism (WLMF) [4]. Multi-

fractal analysis for artwork analysis has been previously ex-

plored in e.g., [5], and has recently been revisited on Van

Gogh’s paintings [6] in a dating and forgery detection experi-

ment.

In this contribution, we demonstrate the WLMF at work

on the task of discriminating authentic Bruegel drawings from

imitations. The 2D-WLMF is introduced in Section 2. The

drawing data set, made available by the NY Metropolitan Mu-

seum of Art, is described in Section 3, where the fractal prop-

erties of the drawings are also investigated. In Section 4, dis-

crimination performance based on wavelet leader multifractal

attributes, obtained using projections and Quadratic Discrim-

inant Analysis are reported and commented with respect to art

expertise.

2. MULTIFRACTAL ANALYSIS

Hölder Exponent and Multifractal Spectrum. Let

X(x) (with x = (x1, x2)) denote the gray level image rep-

resenting the homogeneous texture of interest. It is now
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well-known that its scaling and regularity properties are well-

characterized by its so-called multifractal spectrum D(h),
0 ≤ D(h) ≤ 2. It consists of the Hausdorff dimensions D of

the set of points x in the image whose local regularity takes

an identical value, labeled h [7, 4]. This local regularity is

mathematically defined as the Hölder exponent of X at x. It

is crucial to emphasize that, though based on local regularity

measurements, D(h) conveys a global and geometrical infor-

mation about the fluctuations along space of the regularity of

X . To measure practically D(h) from a given image, one has

to recourse to a multifractal formalism. Here, we make use of

the wavelet leader based formalism, recently introduced and

shown to have robust and favorable theoretical and practical

qualities compared to previous formulations [4].

Wavelet coefficients and leaders. Let d
(m)
X (j,k)

denote the L1 normalized 2D-Discrete Wavelet Transform

(DWT) coefficients computed from image X using the stan-

dard recursive pyramidal algorithm, with 2D orthonormal

wavelet basis obtained as tensor product of 1D wavelet basis

(cf. e.g., [8, 7, 4]). Let λj,k1,k2 denote the dyadic square

λj,k1,k2 = [k12j , (k1 + 1)2j) × [k22j , (k2 + 1)2j), and

3λj,k1,k2 the union of λj,k1,k2 and its 8 closest neighbours,

i.e., 3λj,k1,k2 = [(k1 −1)2j , (k1 +2)2j)× [(k2 −1)2j , (k2 +
2)2j). The wavelet leaders LX are defined as [4]:

LX(j, k1, k2) = sup
m,λ′⊂3λj,k1,k2

|d(m)
X (λ′)|. (1)

The leader LX(j, k1, k2) located on the node of the dyadic

grid (j, k1, k2) is hence obtained by replacing the wavelet

coefficient d
(m)
X (j, k1, k2) by the largest of all the |d(m)

X (λ′)|
that are located at scales finer or equal to 2j within a small

neighborhood around location (x1 = 2jk1, x2 = 2jk2).
Multifractal Formalism. Multifractal analysis is

deeply related to the scale invariance properties of X in so far

as its structure functions, i.e., the space averages of the q-th

power of its wavelet leaders (where nj denotes the number

of wavelet coefficients actually computed at scale a = 2j),
behave asymptotically as power-laws with respect to the

analysis scale a = 2j (in the limit of fine scales j → −∞):

S(2j , q) =
1
nj

∑

k1,k2

LX(j, k1, k2)q ∼ λq2jζ(q). (2)

Such power-law behaviors and the corresponding scaling ex-

ponents ζ(q) measured from Bruegel drawings and imitations

are shown in Fig. 1 (2nd and 3rd rows). Furthermore, it

can be shown theoretically that the Legendre transform of

the scaling function ζ(q) provides an upper bound of D(h):
D(h) ≤ L(h) = infq∈R(2 + qh − ζ(q)). Real-life images

are never available with infinite resolution. Therefore, the

spectrum D(h) can not be computed exactly. In practice,

L(h) is the only quantity that can actually be estimated and

will (with slight abuse of language) subsequently be referred

to as the multifractal spectrum. Of practical importance, the

use of the Legendre transform indicates that the full curve

L(h) can be obtained only if both positive and negative qs are

used. Estimated multifractal spectra from a Bruegel drawing

and an imitation are illustrated in Fig. 1 (bottom row).

Global regularity. The wavelet coefficients d
(m)
X (j,k)

enable to define and measure another important regularity

property of X , its global regularity hm defined as [4]:

hm = lim inf
2j→0

log( sup
m,k1,k2

|d(m)
X (j, k1, k2)|)/ log(2j). (3)

When positive, hm corresponds to the smallest value of h that

exists in X or, i.e., the leftmost point of L(h).
The WLMF described above applies only to functions X

with hm > 0. For images whose hm is negative, the wavelet

leaders need to be modified according to [4]:

L
(γ)
X (j, k1, k2) = sup

m,λ′⊂3λj,k1,k2

|2γjd(m)
X (λ′)|, (4)

with γ > −hm. It has been shown that the L
(γ)
X actually

correspond to the wavelet leaders of the image X fraction-

ally integrated, with fractional order γ (the reader is referred

to [4] for details). The multifractal formalism is applied as

above by replacing LX(j, k1, k2) with L
(γ)
X (j, k1, k2). For

thorough introductions to and details on multifractal analysis,

the reader is referred to e.g., [7, 4].

Interpretation. Practically measured multifractal

spectra usually consist of bell-shaped functions, often well-

approximated by their parabolic expansions: D(h) = 2 −
(h− c1)2/(2|c2|), where c1 and |c2| are parameters modeling

the position of the maximum and the typical width of D(h).
Qualitatively, the larger c1 the more regular the image X is

globally, or, in average. When |c2| is very small, it essentially

indicates that the regularity of the image is almost the same

over all its pixels. Conversely, a large |c2| reveals large fluc-

tuations of the local regularity h from one pixel to another,

indicating that the texture, though globally homogeneous,

yields the visual impression of densely intertwined pieces

with smoothness ranging from more regular to very irregular.

Estimation. It has been shown elsewhere that the mul-

tifractal parameters ζ(q), L(h), hm, c1, c2 can be accurately

estimated by linear regressions in suitable coordinates (cf.

[4]). This collection of multifractal attributes can then be in-

volved in usual image processing tasks, such as classification.

3. DRAWINGS: FRACTAL AND SCALING

Database. Two sets of digitized slides of drawings

(2592 × 3894 pixels, RGB Channels) consisting of 8 of

Bruegel drawings and 4 known imitations (referenced in

Tab. 1, not shown here for reproduction restrictions) were

made available to research teams by the NY Metropolitan

Museum of Art, via D. Rockmore (Dartmouth College).

They are very gratefully acknowledged. A more complete

description of the drawings is available in [1].

3910



Scaling range. Because colors seem to convey a priori

only little information with respect to the textures of the avail-

able drawings, only grey level intensity images are analyzed.

Patches of size 1024 × 1024 pixels are selected in the draw-

ings and the WLMF described above applied independently

to each of them. The scaling properties and multifractal spec-

tra are illustrated in Fig. 1 for an authentic drawing and an

imitation. It is consistently found that power law behaviors,

as in Eq. (2), hold, for all drawings, over 3 octaves (1 decade)

covering scales 24 to 27, i.e. 16 × 16 to 128 × 128 pixels

(cf. Fig. 1, 3rd row). This corresponds to fine scales of the

artwork compared to its global size and hence indicates that

these fractal or scaling properties are not related to the geom-

etry or shape of the object or subject drawn but rather stem

from the hand style of the artist.

Fractal properties. Plots (available upon request),

equivalent to those shown in Fig. 1, are obtained for all 12
drawings for at least 3 patches in each drawing. Furthermore,

it is observed that estimates stemming from different patches

of a single drawing are consistent (see also Fig. 2). The tex-

tures in the drawings are therefore relevantly described by

their multifractal spectra L(h) and related attributes. Fig. 1

further suggests that imitations have multifractal spectra sys-

tematically shifted to the right compared to authentic draw-

ings, revealing significantly more regularity in their textures.

MMA. Title Artist

label cat. no.

1 3 Pastoral Landscape Bruegel

2 4 Mountain Landscape Bruegel

with Ridge and Valley

3 5 Path through a Village Bruegel

4 6 Mule Caravan on Hillside Bruegel

5 11 Landscape with Saint Jerome Bruegel

6 13 Italian Landscape Bruegel

7 20 Rest on the Flight into Egypt Bruegel

8 9 Mountain Landscape Bruegel

with Ridge and Travelers

9 7 Mule Caravan on Hillside unknown

10 120 Mountain Landscape with a unknown

River, Village, and Castle

11 121 Alpine Landscape unknown

12 125 Solicitudo Rustica unknown

Table 1. Database. Metropolitan Museum of Art catalog

number (MMA cat. no.), title, and artist. The first column

gives the labels used in this work: Bruegel drawings (labels 1
to 8) and imitations (labels 9 to 12).

4. TRUE BRUEGEL’S VERSUS FORGERIES

Projections. To validate the above observation, for

each drawing, 3 patches are selected to which the WLMF is

applied independently. We set γ systematically to γ = 0.75
and use Daubechies Wavelet with Nψ = 2 vanishing mo-
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Fig. 1. Multifractal spectra of Bruegel drawing and im-
itation. Left column: Bruegel drawing ; Right: imitation.

From top to bottom, drawings and selected patch, structure

functions, scaling exponents and multifractal spectra.

ments. The patches are non overlapping and located near the

bottom of the drawings, where the drawings exhibit consis-

tently the richest textures. Projections on subspaces of pairs

of multifractal attributes are reported in Fig. 2. Each patch

is labeled by the number, printed in small, of the drawing

identifier it belongs to, while the numbers printed in large

correspond to values obtained, for each drawing, as averages

of the estimates from the patches. Fig. 2 shows that hm and

c1 globally take larger values for the imitations compared to

the authentic Bruegels. Furthermore, it also suggests, with

less clarity though, that the |c2| of authentic Bruegels is larger

than those of imitations. Together, these results indicate that

imitations show significantly more global regularity (or less

variability) than the authentic Bruegels, and also display less

regularity fluctuations along space. This suggests that im-

postors trying to reproduce Bruegel’s hand style failed to

replicate the strong irregularities and variabilities of the tex-

tures that characterize his drawings and likely his hand style.

Interestingly, similar results where reported on differences
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Fig. 2. Multifractal attributes. Projections of the two sets

of drawings into subspaces spanned by pairs of multifractal

attributes. Numbers printed in small correspond to each patch

while numbers printed in large stand for the average per draw-

ing over the 3 patches. Numbers correspond to the labels

given in Tab. 1. Both projections clearly indicate that copies

are globally more regular than true Bruegel’s (larger c1 and

hm). Also, copies tend to have smaller c2, further indication

for less variability in the texture.

between original drawings and their replica, produced by one

same artist in a scientific experiment (cf. [6]).

Quadratic Discriminant Analysis (QDA). To further

quantify the discrimination potential of the estimated multi-

fractal attributes, we employ a classification procedure. Given

the low number of elements in each class, and the objective

here not being the classification procedure itself, we chose to

use QDA to perform a simple discrimination. Assuming joint

Gaussian distributions with a priori different and estimated

means and covariance for the two classes, QDA assigns each

patch to a class according to the ratio between the corre-

sponding log-likelihood functions. Applied to the vectors of

multifractal attributes c1, c2, hm, QDA yields the discrimina-

tion reported in Fig. 3. Applied to each patch independently,

a perfect detection of the forgeries at the price of the mis-

classification of 7 out of the 24 = 8 · 3 patches of authentic

Bruegels is obtained. Averaging over the patches of each

drawing significantly improves the results as all imitations

are detected at the price of a single false detection (Drawing

5) only. Interestingly, the use of any pair of multifractal at-

tributes compared to the joint 3-tuple c1, c2, hm decreases the

classification performance, clearly showing the relevance of

each parameter in fully characterizing the drawing textures.

Conclusions and perspectives. Besides showing very

satisfactory discrimination performance, the WLMF based

analysis motivates interesting interactions with Art experts to

address more systematic questions such as: Should specific

patches corresponding to particular art characteristics of the

drawing receive more refined investigations? How can the

scales where fractal properties are found to hold be related

more precisely to the artist’s hand? These questions are under

current investigation and discussion with Art experts (cf. [6]).

D. Rockmore is gratefully acknowledge for making the draw-
ings available to us, and for valuable comments on this work.
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0

misclassification [Brueghel, Forgery]: [0.29, 0]

0

misclassification [Brueghel, Forgery]: [0.13, 0]

Fig. 3. Quadratic Discriminant Analysis. QDA applied

to the 3D vectors of multifractal attributes c1, c2, hm for all

patches (top) and average over patches per drawing (bottom).

Bruegel’s drawings (in blue, left), Forgeries (in red, right).

QDA reveals very satisfactory discrimination between true

Bruegel’s drawings and forgeries from their multifractal at-

tributes, with one single true Bruegel being misclassified.
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