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ABSTRACT
We study the identification problem for Bates stochastic

volatility model, which is widely used as the model of a stock

in finance. By using the exact simulation method, a particle

filter for estimating stochastic volatility and its systems pa-

rameters is constructed. Simulation studies for checking the

feasibility of the developed scheme are demonstrated.

Index Terms— Nonlinear filter, Particle filter, Stochastic

volatility, Parameter estimation,Chi-square distribution

1. INTRODUCTION

In this paper, we estimate stochastic volatility and unknown

system parameters in general stochastic volatility models with

jumps as proposed by Bates [4] as given below

dSt = (μS + λSvt)Stdt+
√
vtStdBt + StdZ

J
t − λmJStdt

dvt = {κ(θ − vt) + λvvt}dt+ ξ
√
vtdZt (1)

where Bt and Zt are standard Brownian motion processes

with correlation ρ, ZJ
t denotes the pure-jump process which

contains two components: random-event times and random

jump sizes, and is independent of Bt and Zt. Denoting the in-

tensity of the jump event time as λ and the mean relative jump

size as mJ , and by applying Ito’s formula to yt = logSt/S0,

we have

dyt = (μS − λmJ + (λs − 1

2
)vt)dt+

√
vtdBt + dqJt , (2)

where qJt is a compound Poisson process with intensity λ and

Gaussian distribution of jump size,i.e., N(μJ , σ
2
J ). Introduc-

ing the new Brownian motion

Z̃t =
1√

1− ρ2
(Zt − ρBt), (3)

(1) becomes

dvt = κ(θ − vt)dt+ ξ
√
vt
√
1− ρ2dZ̃t

+ξρ(dyt − (μS − λmJ − (
1

2
− λS)vt)dt− dqJt ). (4)

This work is partially supported by MECSST of Japan under Grant-in-
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The systems parameters μS , κ, θ, ξ, λS and λv need to be cal-

ibrated from the historical data.

Our first problem is to estimate volatility vt based on ob-

served data yt. This is the usual filtering problem in sig-

nal processing. But the traditional extended Kalman filter-

ing technique does not work in this situation, because a) the

model is highly nonlinear, b) model has jumps, c) observation

noise contains the system state.

The increasingly popular particle filtering technique

method works extremely well in this situation [1]. One

common problem of using particle filter in general is to ob-

tain an appropriate importance function. In our model we can

actually sample from the optimal importance function which

is in itself a remarkable fact [2, 3]. One serious difficulty of

using particle filtering is the generation of the systems parti-

cles. Discrete approximations may lead to negative samples.

To circumvent this problem, the exact simulation method has

been recently proposed in [5] . Using this algorithm we can

now formulate the particle filter where the transition and opti-

mal importance functions are given by non-central chi square

density functions.

Estimating unknown parameters in stochastic volatility

models is known to be very difficult. The MLE does contain

the usual difficult problem of multiple local maxima. Even

the outputs from EM algorithm do not converge well, because

of the shape of the chi-square probability density.

Although the usual augmented state approach does not al-

ways behave properly as shown in [1], we use this augmented

state approach, because the bounds for unknown parameters

are easily set a-priori and hence the estimate of the degrees

of freedom of the non-central chi-square probability is well

controlled in the required region for fitting commodity data.

2. EXACT PARTICLE FILTERING

2.1. Exact sampling

In order to implement the particle filter, the original system

is usually approximated to the discrete-time one by using the

Euler method. This approximation easily causes bias from

the original continuous system. For example, the discrete-
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time volatility process vk often becomes negative. To avoid

this bias, we propose the exact sampling method which is de-

veloped by Broadie and Kaya [5] for simulating the Heston

process. In particle filter we generate samples from the op-

timal importance function p(vt2 |vt1 , yt2 , yt1). Now we shall

present the exact sampling procedure. For simplicity we con-

sider the time interval t1 < t2 and set the following assump-

tion: At most one jump occurs in this time interval and we

observe yt2 and yt1 .

1. Exact sampling from p(vt2 |vt1 , yt2 , yt1)
From (2), the volatility process vt2 is represented by

vt2 = ṽt1 +

∫ t2

t1

κ̃(θ̃ − vs)ds

+

∫ t2

t1

ξ
√
vs
√
1− ρ2dZ̃s, (5)

where

ṽt1 = vt1 + ρξ{yt2 − yt1
−(μS − λmJ)(t2 − t1)−Δqit1}

κ̃ = κ− ρξ

2
+ ξ(ρλS − λv)

θ̃ =
κθ

κ̃
.

Δqit1 = jump sample from qJt1 for t1 < t < t2.

Now assuming that ṽt1 ≥ 0, we find that the transi-

tion law of vt2 given vt1 , yt1 and yt2 is expressed as the

non-central chi-square random variable χ2
d(λχ) with d

degree of freedom and non-centrality parameter λχ,

ξ2(1− ρ2)(1− e−κ̃(t2−t1))

4κ̃
χ2
d(λχ), (6)

where

d =
4θ̃κ̃

ξ2(1− ρ2)

and

λχ =
4κ̃e−κ̃(t2−t1)

ξ2(1− ρ2)(1− e−κ̃(t2−t1))
ṽt1 .

Hence by using MATLAB code ”ncx2rnd.m”, we can

get a sample vt2 .

For the case that ṽt1 < 0, which may occur when vt1
is very small, we need to adjust above procedure as de-

scribed in the next step.

2. ṽt1 < 0 case

We reconstruct the data for t1 < τ1 ≤ t2 such that

Δy(τ1 − t1)

=
ρξ{yt2 − yt1 − (μS − λmJ)(t2 − t1)−Δqjt1}

t2 − t1
×(τ1 − t1)

and τ1 satisfies

vt1 +Δy(τ1 − t1) ≥ 0.

where it is always possible to find τ1, because

lim
τ1→0

{vt1 +Δy(τ1 − t1)} = vt1 > 0.

By using the step 1., we obtain vτ1 > 0. Now we check

whether vτ1+Δy(t2−τ1) is non-negative or not. If this

is non-negative, we repeat the step 1. again and obtain

vt2 > 0.If not we need to find τ2:

vτ1 +Δy(τ2 − τ1) ≥ 0.

Repeat above procedure, we finally obtain vt2 > 0. For
˜̃vt2 < 0 case, we should use the same procedure men-

tioned here.

2.2. Construction of probability density function

If we use the Euler scheme, the generated sample becomes

conditionally Gaussian. However in the exact sampling

scheme , the processes generated are governed by the non-

central chi-square distribution. Although the explicit function

form of this distribution is not possible, we can numerically

evaluate the pdf by using the MATLAB code, ”ncx2pdf.m”.

• p(vt2 |vt1 , yt2 , yt1) form

Noting that the jump size Us
· is Gaussian with mean μJ

and variance σ2
J , we have

p(vt2 |vt1 , yt2 , yt1)

×pdf of

{
ξ2(1− ρ2)(1− e−κ̃(t2−t1))

4κ̃
χ2
d(λ̃χ)

}

+e−λ(t2−t1)λ(t2 − t1)

×
∫ ∞

−∞
pdf of

{
ξ2(1− ρ2)(1− e−κ̃(t2−t1))

4κ̃

×χ2
d(λ̃χ − 4κ̃e−κ̃(t2−t1)ρ

ξ(1− ρ2)(1− e−κ̃(t2−t1))
Us)

}

× 1√
2πσ2

J

exp(− (Us − μJ)
2

2σ2
J

)dUs (7)

where

λ̃χ =
4κ̃e−κ̃(t2−t1)

ξ2(1− ρ2)(1− e−κ̃(t2−t1))
{vt1

+ρξ{yt2 − yt1 − (μS − λmJ)(t2 − t1)}}
In (7), the first term implies that we have no jump

and the second term is caused by the jump size Us ∈
N(μJ , σ2

J ). Furthermore in the second term we need to

calculate the Gaussian integral. We may use some nu-

merical procedure to calculate this but the best choise

is still an open problem.
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• p(vt2 |vt1 , yt1) form

It follows from (5) that

p(vt2 |vt1 , yt1)

= pdf of
ξ2(1− e−(κ−ξλv)(t2−t1))

4(κ− ξλv)
χ2
d(λ

v
χ), (8)

where

d =
4θκ

ξ2
,

and

λv
χ =

4(κ− ξλv)e
−(κ−ξλv)(t2−t1)

ξ2(1− e−(κ−ξλv)(t2−t1))
vt1 .

• p(yt2 |yt1 ,
∫ t2
t1

vsds) form

In this case, we easily get

p(yt2 |yt1 ,
∫ t2

t1

vsds) =
1− e−λ(t2−t1)λ(t2 − t1)√

2π(1− ρ2)
∫ t2
t1

vsds

× exp[− 1

2(1− ρ2)
∫ t2
t1

vsds
{yt2 − (yt1

+(μS − λmJ − κθρ

ξ
)(t2 − t1)

−(
1

2
− κρ

ξ
+ ρλv − λS)

∫ t2

t1

vsds

+
ρ

ξ
(vt2 − vt1))}2]

+
e−λ(t2−t1)λ(t2 − t1)√

2π((1− ρ2)
∫ t2
t1

vsds+ σ2
J )

× exp[− 1

2((1− ρ2)
∫ t2
t1

vsds+ σ2
J)

{yt2

−(yt1 + (μS − λmJ − κθρ

ξ
)(t2 − t1)

−(
1

2
− κρ

ξ
+ ρλv − λS)

∫ t2

t1

vsds+ μJ

+
ρ

ξ
(vt2 − vt1))}2] (9)

2.3. Exact particle filter algorithm

Now we can perform the exact particle filter. The weight w
(i)
·

is given by the following recursive form:

w
(i)
tk

= w
(i)
tk−1

p(ytk |ytk−1
,
∫ tk
tk−1

v
(i)
s ds)p(v

(i)
tk
|v(i)tk−1

, ytk−1
)

p(v
(i)
tk
|v(i)tk−1

, ytk , ytk−1
)

. (10)

The algorithm steps are:

• At each time tk, using ytk , ytk−1
, we generate particles

v
(i)
tk

from the algorithm (1) and calculate p(v
(i)
tk
|v(i)tk−1

,
ytk , ytk−1

) given by (7).

• Using v
(i)
tk
, v

(i)
tk−1

, we calculate p(v
(i)
tk
|v(i)tk−1

, ytk−1
)

given by (8).

• Using the above generated
∫ tk
tk−1

v
(i)
s ds in the algorithm

(2) and the observation data ytk , ytk−1
, we calculate

p(ytk |ytk−1
,
∫ tk
tk−1

v
(i)
s ds) from (9).

• Update the weight w
(i)
tk

given by (10).

• In the above steps, we may use the resampling method,

if needed.

3. PARAMETER IDENTIFICATION

Before constructing the parameter identification procedure,

we will discuss about the noncentral chi-square probability

density function. If the degrees of freedom d defined by

d =
4κθ

ξ2

takes its value greater than 2, the log likelihood function is

negative and convex and ”zero” is not attainable. However if

d ≤ 2, the point ”zero” is attainable and the function form

of the log likelihood function becomes concave and its value

becomes positive near zero point. Since in most practical ap-

plications in finance d/2 << 1, the log likelihood functional

is not easy to be selected as the optimal cost. Furthermore

if we use the EM-algorithm for finding the MLE for model

parameters, in the maximization step we seek the next step

optimal parameter value for fixing the state as the smoothed

value with some fixed parameters and then the cost function

tends to move to the infinity. This implies that we need the

strict upper and lower bounds for unknown parameters for

using EM-algorithm. That is, the value of the degrees of free-

dom should be fixed in proper region. However in practice,

it is not possible to guess its value in advance. For avoiding

these difficulties, we propose the usual filtering algorithm for

identifying the system parameters.

3.1. Parallel filtering

For identifying the system parameters, we construct the par-

allel filtering algorithm for fixing the unknown parameter de-

fined as

α = [κ θ ξ μS ρ λ μJ σJ ].

To perform the particle filter for vk with the fixed α, we as-

sume that

α ∈ U(uniform distribution with known upper

and lower bounds).

To start our particle filter, we generate the initial pair particles

(v
(i)
0 , α(i)) ∈ N × U, i = 1, 2, · · · , N.
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At each time step tk we generate v
(i)
k+1 with the fixed α(i)from

(5) and we can calculate (10). We then construct the estimates

α̂tk =
N∑
i=1

α(i)w
(i)
tk
, and v̂tk =

N∑
i=1

v
(i)
tk
w

(i)
tk
.

4. SIMULATION STUDIES

We set the following parameters in Table 1 with their esti-

mates: Here we set dt = 1/252 and M = 2000. The lower

Table 1. Model parameters and their estimates(T = 1)

κ θ μS ρ ξ
True 0.864 1.100 0.060 -0.150 2.100

Estimated 0.830 1.037 0.057 -0.147 2.059

λ μJ σJ λv λS

True 0.100 -0.020 0.250 0.188 0.372

Estimated 0.096 -0.19 0.239 0.166 0.344

and upper bounds for parameters are set as given in Table.2.

Table 2. Lower and upper bounds of model parameters

κ θ μS ρ ξ
Upper bound 0.993 1.265 0.069 -0.113 2.415

Lower bound 0.648 0.825 0.045 -0.173 1.575

λ μJ σJ λv λS

Upper bound 0.115 -0.015 0.287 0.216 0.428

Lower bound 0.075 -0.023 0.188 0.141 0.279

Now we show the observation data yt and its log price .
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Fig. 1. Observation data yt

In Fig.2, the true and estimated vt is demonstrated.
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Fig. 2. True and estimated vt

5. CONCLUSIONS

We developed a particle filter algorithm for estimating a

stochastic volatility and its model parameters. It should be

noted that if the usual Euler scheme is applied for estimating

vt as in [1], the particle filter algorithm does not work,i.e., if

v̂t hits ”zero”, the filter algorithm suddenly stops. It has been

shown that the exact simulation technique used here works

well even for the case that the degrees of freedom of a non-

central chi-square distribution is less that 2, i.e., v̂t may hit

”zero”. Noting that the estimation procedure developed here

is an on-line scheme, it is also possible to apply this scheme

to a mean-variance hedging problem in finance.
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