MULTIVARIATE ENTROPY ANALYSIS WITH DATA-DRIVEN SCALES
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ABSTRACT

A data-adaptive algorithm for the entropy-based analysis of struc-
tural regularities (complexity) in multivariate signals is proposed.
This is achieved by combining multivariate sample entropy with a
multivariate extension of empirical mode decomposition, both data-
driven multiscale techniques. The proposed analysis across data-
adaptive scales makes the approach robust to nonstationarity, a crit-
ical issue with information theoretic measures. Simulations on syn-
thetic and real-world physiological data support the approach and
validate the hypothesis of increased complexity for unconstrained as
compared to constrained (due to e.g. ageing or illness) biological
systems.

Index Terms— Multivariate sample entropy, multivariate em-
pirical mode decomposition, multivariate multiscale entropy, dy-
namical complexity, complexity of physiological data

1. INTRODUCTION

A fundamental goal of statistical signal processing is the estimation
of robust descriptors which can fully characterize the underlying
generating mechanisms of real-world systems from their observed
time series. Examples include complexity, local predictability, irreg-
ularity, self-similarity and synchrony. To extend the scope of time-
delay embedded reconstruction in order to cater for the dynamics
of a system across its different time-scales, Costa et al. introduced
the multiscale entropy (MSE) that provides a measure of complexity
by performing multiple coarse-graining operations on the data and
calculating the sample entropy for each scale [1].

While MSE has been successfully applied to distinguish be-
tween structural dynamics of different real-world physiological time
series based on their complexity [1, 2, 3], the method also gives
opportunity for further improvements. Firstly, the algorithm can
only cater for univariate time series, which limits its practical use as
biological systems are often multivariate in nature. To this end, we
have recently introduced multivariate sample entropy [4, 5], which
examines complexity both across time and data channels to reveal
the extent of the long-range spatio-temporal correlations present in
multivariate signals.

A second limitation of the MSE algorithm, inherited also by the
multivariate extension [4, 5], is the way in which the data scales
are generated. Coarse graining, that is, signal averaging over non-
overlapping segments of increasing length, is unsuitable for the anal-
ysis of high frequency components and also results in aliasing, caus-
ing artifacts. In [6] it was proposed to use a bank of Butterworth fil-
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ters to circumvent the aliasing problem, however such an approach
requires the a priori selection of filter parameters, making the analy-
sis critically sensitive to slight changes in experimental conditions. It
is therefore desirable to make the complexity analysis data-adaptive,
so that it can be conducted across scales that occur naturally, as de-
fined by the data.

Empirical mode decomposition (EMD) is a data-driven method
that decomposes a given time series into a set of oscillatory func-
tions (time-scales), known as intrinsic mode functions (IMFs). Un-
like projection-based methods, such as those based on Fourier and
wavelet theory, EMD obtains the oscillatory modes (scales) adap-
tively and considers the signal dynamics at the ‘local’ level, making
it a natural choice for generating the data-scales required for entropy-
based analysis [7]. We have recently developed a multivariate ex-
tension of EMD (MEMD) to process multichannel data [8] which,
crucially, aligns the decomposed components from different chan-
nels in similar frequency bands, a prerequisite for enabling a scale-
by-scale analysis. Recent work [9] has combined the MEMD algo-
rithm with univariate sample entropy estimation, whereby MEMD
was used to examine dynamics across multiple trials, it was how-
ever limited to single-channel analysis and did not exploit the full
potential of MEMD - that for direct multichannel modelling.

In this paper, we propose to use multivariate EMD in combina-
tion with the multivariate sample entropy statistic [4, 5] to develop
a complete and robust framework for an entropy-based complexity
analysis of multivariate data. Due to the mode alignment property of
MEMD [10], the scales generated for each data channel are aligned
in frequency, which makes the comparison across the data channels
meaningful.

2. MULTIVARIATE EMPIRICAL MODE
DECOMPOSITION

The empirical mode decomposition (EMD) algorithm was developed
as an adaptive approach to time-frequency analysis [11]. The ele-
ments (basis functions) of the decomposition, the so-called intrin-
sic mode functions (IMFs), are by design monocomponent (narrow-
band) and reflect the underlying intrinsic time-scales within a time
series. Unlike coarse graining which is effectively a low pass filter
with decreasing bandwidth, its adaptive nature makes it suitable for
the analysis of nonlinear and nonstationary data that comprise high
frequency signal components. An example of an EMD-defined time
scale is given in Fig. 1. Note that both the frequency and amplitude
information are well defined locally.
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In its original formulation, the EMD algorithm is univariate,
that is, it can only process single channel data. To cater for the
multi-channel nature of real-world systems, the multivariate empir-
ical mode decomposition (MEMD) algorithm [8] has been recently
introduced, which is a generic extension of EMD to process arbitrary
numbers of data channels simultaneously. A key feature of the algo-
rithm is the way in which the local mean of the signal is generated.
MEMD operates by taking multiple signal projections’, and estimat-
ing the envelopes for each, the average of which defines the local
mean. The local mean is recursively subtracted from the signal to
obtain the high frequency ‘detail’ until IMF conditions are satisfied
(zero mean, equal number of local minima and maxima) - defining
the so called sifting process by which the first IMF is obtained. This
process is repeated to extract the next IMFs until the residual signal
only contains the low-frequency trend. Thus, for a given p-variate
time series, x(t), its J IMFs are given by

x(t) =Y _c;(t) (1)

where, for instance, symbols c1(t), ca(t), ..., denote the first ex-
tracted IMFs, which define the high frequency time scales, and the
lower index IMFs, ¢;_1(t), cs(t), which define the low frequency
time scales. The advantages offered by MEMD over univariate
(single-channel) EMD are:

1. Direct processing of multichannel data via MEMD produces
the same number of IMFs for all data channels allowing their
comparison at each scale, independently.

2. MEMD automatically aligns common scales, present across
multiple channels, in multivariate IMFs; a desirable property
hard to achieve by applying univariate EMD channel-wise on
multivariate data.
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Fig. 1. Data scale obtained using EMD.

3. MULTIVARIATE SAMPLE ENTROPY

To calculate multivariate sample entropy (MSampEn) [4, 5], recall
from multivariate embedding theory, that for a p-variate time series
{xk,i}fil, k=1,2,...,p, observed through p measurement func-
tions hk(yi), the multivariate embedded reconstruction is based on
the composite delay vector

Xm (1) = [ml,m T1itTys s Llit(my—1)719 L2405 L2,itTa5

s L2 i (mo—1)1gs -+ 1y Lpyiy Tpyidrps - -+ 7:Dp,i+(mpfl)7—p}7

where M = [m1,m2,...,mp] € RP is the embedding vector,
T = [71,72,...,Tp the time lag vector, the composite delay vector
Xom (i) € R™ (where m = Y 7_, my); the multivariate sample

entropy (MSampEn) is calculated in Algorithm 1.

IThe direction vectors for an n—sphere (an extension of the ordinary
sphere to an arbitrary dimension) are generated by low-discrepancy quasi-
Monte Carlo sequences [8].
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Algorithm 1 Multivariate sample entropy (MSampEn)

1: Form (N — §) composite delay vectors X, (i) € R™, where
i=1,2,...,N —¢and 6 = max{M} x max{7} and define
the distance between any two vectors X, (7) and X, (j) as the
maximum norm;

2: For a given composite delay vector X,, (i) and a threshold r,
count the number of instances P; for which d[ X, (2), Xm ()] <
r,j # i, then calculate the frequency of occurrence, Bi"(r) =
Nféil P;, and define B™ (r) = ﬁ Zﬁ\;‘; B (r);

3: Increase my — (my + 1) for a specific variable k, keeping the
dimension of the other variables unchanged. Thus, a total of
p X (N — &) vectors X,,+1() in R™ T are obtained;

4: For a given X,,,4+1(1), calculate the number of vectors QQ;, such
that d[X,m+1(7), Xm+1(j)] < r, where j # 4, then calculate
the frequency of occurrence, B""!(r) = WQ% and

m N—§ m
define B (r) = m SO P9 gmtL (),
5: Finally, for a tolerance level r, estimate M SampFEn as

B™(r)

MSampEn(M,T,r,N) = —In [ Blr)

}. 2)

4. MEMD-BASED MULTIVARIATE MSE

We propose to use MEMD to generate multiple data driven, intrinsic,
temporal scales for a given multivariate data, and subsequently per-
form multivariate entropy analysis on so generated cumulative IMFs
(scales). For this cause, fully aligned scales from input multivari-
ate data are first obtained by applying MEMD both across multiple
channels and multiple trials of the input data. Next, multivariate
sample entropy estimates are calculated for the so-defined ‘scales’
of the multivariate input data to reveal the long-range correlation
structure. The proposed algorithm is shown in Algorithm 2.

Remark 1. Note that, unlike other EMD/MEMD based sample en-
tropy methods [7] [9] which employ univariate sample entropy, the
proposed method is fully multivariate as it calculates multivariate
sample entropy estimates, thereby, catering for linear/nonlinear cor-
relations between channels.

Algorithm 2 MEMD-based multivariate multiscale entropy

1: Generate multiple scales from J IMFs obtained by applying
MEMD to a given multivariate time series {xx ;} i for k =
1,2,...,p, where p denotes the total number of variates (chan-
nels) and N represents the total number of samples in each vari-
ate which does not change across MEMD-based scales.

2: Define data-driven ‘scales’ of = as the cumulative sum of IMFs
either by c,, = Zj:n c; (Approach 1) orby c,, = Z;.]:_I”“ ’
(Approach 2), where n € [1, J] denotes the cumulative IMF
index. Only Approach 1 is used in the sequel.

3: Calculate and plot multivariate sample entropy measure, given
in (2), for each scale n.

To illustrate the performance of the proposed method, it was applied
to a synthetically generated bivariate white noise and bivariate 1/ f
noise. The 1/ f noise possesses long-range correlations and its stan-
dard entropy (at scale 1) is lower than that of white noise, however,
the 1/f noise is structurally complex whereas the bivariate white
noise is not, and any complexity measure should be higher for 1/ f
noise at increasing scales. Observe from Fig. 2(b) that though bi-
variate white noise has higher complexity than 1/f noise for the



first scale, the complexity becomes lower than 1/ f noise for higher
scales. This example on synthetic data illustrates, that by design,
1/f noise is structurally more complex than uncorrelated random
noise, a result consistent with standard MSE/MMSE [1, 4, 5] as
shown in Fig. 2(a).
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Fig. 2. MMSE analysis for bivariate white and 1/ f noise: (a) using
coarse graining and (b) MEMD-based scales. The curves represent
an average of 20 independent realizations and error bars the standard
deviation (SD).

Remark 2. A direct comparison is often not possible between the
scales of MEMD-based MSE and those of standard MSE as, by de-
sign, the frequency ranges of the cumulative IMF's adapts to the data.
In the case of white noise, however, the dyadic filter bank property of
MEMD is well known [10]. Disregarding elements of coarse grain-
ing®, the averaging operation at scale € is equivalent to low pass
filtering with a cutoff frequency (normalised) of fo = 0.5/€. Thus
for the nth cumulative IMF index (Approach 1) of white noise, the
equivalent scale factor is given by € ~ 2"~ . For insight, the equiv-
alent scale factors for white noise are shown for cumulative IMF
indexes in Fig. 2(b).

5. SIMULATION RESULTS

5.1. Gait analysis: complexity change with constraints

Stride intervals from human gait [12] data were analysed with the
aim of revealing long-range correlations, a signature that suggests
cooperation within the different bodily subsystems at different time
scales. Stride interval fluctuations were recorded from ten healthy
subjects who walked for 1 hour at normal, slow, and fast paces.
The participants were further asked to walk following a metronome
which was set to each participant’s mean stride interval [12].

2The filtering operation equivalent to coarse graining is characterised by
a very slow roll-off as well as large sidelobes which introduce aliasing ar-
tifacts [6]. The equivalent relationship between scale factor and cumulative
IMF index given in the paper assumes a considerably faster roll-off as well
as the absence sidelobes.
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Fig. 3. MMSE analysis for self-paced vs metronomically-paced
stride interval time series: (a) using coarse graining and (b) MEMD-
based scales. The curves represent an average over 10 subjects, and
the error bars the SD.

We considered the three walking conditions (from the data avail-
able from [12]) as different variables from the same system, and cal-
culated MSampEn for different scales (cumulative IMFs) generated
from MEMD and in this way were able to discriminate between the
‘self-paced’ and ‘metronomically-paced’ walk. The values of the
parameters used to calculate MSampEn were mjy = 2, 7, = 1
and r = 0.15x(standard deviation of the normalized time series)
for each data channel; these parameters were chosen on the basis of
previous studies indicating good statistical reproducibility for Sam-
pEn [3].

Fig. 3(a) shows the results obtained by the standard coarse-
graining based MMSE method and Fig. 3(b) for the proposed
MEMD-based method. Both methods found that self-paced ‘un-
constrained” walk has higher complexity, and thereby long-range
correlations, than constrained ‘metronomically-paced” walk. To
evaluate the statistical difference of the entropy statistics of self-
paced and metronomically-paced sets, the Student’s t-test and the
Mann-Whitney U test were applied. Both these tests revealed signif-
icant differences (p < 0.01) at all IMF-defined scales except the first
two for standard coarse graining as well as MEMD-based MMSE
method. Note that the first scale corresponds to the raw signal
and MSampEn measures cannot discriminate between self-paced
and metronomically-paced walk in either method. Moreover, as
desired the separation between the MMSE curves of unconstrained
and metronomically-paced walk is higher for the MEMD-based
method (Fig. 3(b)), as indicated by much smaller error bars. Thus,
using cumulative IMFs as data-adaptive scales offers a significant
improvement over the coarse-graining based MMSE. These results
also support the more general concept of multiscale complexity
loss with ageing and disease or when a system is under constraints
(metronomically-paced walk), which all reduce the adaptive capac-
ity of biological organization at all levels [13].



5.2. Structural complexity of different brain states

The proposed algorithm was next applied to multivariate electroen-
cephalogram (EEG) signals to establish whether the differences
in multichannel complexity can indicate changes in brain states.
As a proof of concept we considered the well understood alpha-
attenuation paradigm. Namely, closing of the eyes causes an in-
crease in alpha activity (8 - 12 Hz) in the spectrum of EEG, a well
known response that is closely linked to the degree of alertness.
Seven 3 s recordings were made for the same subject® for the states
of ‘eyes open’ and ‘eyes closed’. The recording trials for both states
can be represented as a composite 2 X N, X Ng.-variate vector
where N. = 2 denotes the number of electrode channels, N = 7
denotes the number of trials, and the length of the vector equals the
sample length of each recording. A total of 9 IMFs (data-scales)
were obtained by performing a single operation of MEMD on the
composite data vector, in this way ensuring aligned scales both
across trials and electrode channels, and different brain states.

The average complexity analysis over the 7 trials is shown
in Fig. 4(a) using standard coarse graining-based MMSE and in
Fig. 4(b) using MEMD-based MMSE. Note that while separation
between the ‘eyes closed’ and ‘eyes open’ states of alertness was
not possible using standard MMSE (the error bars overlap for every
scale in Fig. 4(a)), the adaptive nature of MEMD-based MMSE
enabled a clear separation between the states (even the error bars
do not overlap for index 3) at scales which correspond to the alpha
frequency range - scales 2 and 3 in Fig. 4(b).

6. CONCLUSIONS

By combining adaptive scale estimation with multivariate entropy
theory, a robust structural complexity descriptor for multivariate time
series has been developed. Unlike standard techniques, the proposed
algorithm is both suitable for nonstationary data and can measure
complex coupled dynamics within the vector data channels, pre-
requisites for the analysis of real-world systems which are typically
of a multivariate, coupled and noisy nature. Simulations for biolog-
ical systems illustrate conclusively how the approach can be used to
reveal long-range spatio-temporal correlations present in their time
series, signatures of the underlying complex signal generating mech-
anism.
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