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ABSTRACT

Inspired from non-equilibrium statistical physics models, a

general framework enabling the definition and synthesis of

stationary time series with a priori prescribed and controlled

joint distributions is constructed. Its central feature consists of

preserving for the joint distribution the simple product struc-

ture it has under independence while enabling to input con-

trolled and prescribed dependencies amongst samples. To that

end, it is based on products of d-dimensional matrices, whose

entries consist of valid distributions. The statistical properties

of the thus defined time series are studied in details. Having

been able to recast this framework into that of Hidden Markov

Models enabled us to obtain an efficient synthesis procedure.

Pedagogical well-chosen examples (time series with the same

marginal distribution, same covariance function, but different

joint distributions) aim at illustrating the power and potential

of the approach and at showing how targeted statistical prop-

erties can be actually prescribed.

Index Terms— Time Series Synthesis, Joint Distribution,

A priori Prescription, Hidden Markov Model

1. INTRODUCTION

In modern signal processing, the need to produce numerically

random vectors whose joint distributions are fully prescribed

and controlled is more and more common. Typical examples

are Bayesian estimation (with Monte Carlo Markov Chain

or variational based resolution schemes, cf. e.g., [1]) or esti-

mation performance assessment (where estimators are bench-

marked on time series with prescribed distributions). For uni-

variate Gaussian stationary time series, the so-called Circu-
lant Embedded Matrix synthesis procedure [2] is considered

as the state of the art solution. For non Gaussian station-

ary time series, various approaches were proposed that aim

at controlling both the marginal distribution and the covari-

ance structure of the process (cf. e.g., [3, 4] and references

therein for reviews). Often, such methods suffer from two

major limitations: The joint distribution cannot be prescribed

a priori and is hence not controlled and results as a conse-

quence of the details of the synthesis procedure; Distributions

that consist of mixtures of elementary laws cannot always eas-

ily be combined with prescribed covariance. The very general

framework of Markov Chain simulation offers an alternative

and broad class of solutions, focusing on the modeling of lo-

cal dynamical properties, while not explicitly putting the em-

phasis on a direct prescription of the joint distributions of the

process.

Instead, in the present contribution, the focus is on the

synthesis of stationary time series whose joint distributions

are explicitly prescribed and chosen a priori. It is based

on a construction inspired from out-of-equilibrium statis-

tical physics models (cf. e.g., [5, 6, 7]). It is founded

on the central idea that the joint distribution of a vector

XN = x1, x2, . . . , xN is still written as a (oriented) product:

pX ∝ ∏N
k=1 Rd(xk), where, however the Rds are not single

distributions, but instead d-dimensional matrices of distribu-

tions. The key results of the present contribution consist of

first deriving the general properties of this construction and

then to specify it to a very interesting case specifically suited

for stationary time series with all joint distributions prescribed

(cf. Section 2). An efficient synthesis procedure is devised

by explicitly recasting this framework into that of Hidden

Markov Models (cf. Section 3). Finally, explicit examples

are studied and simulated numerically, aiming at illustrating

the power of the proposed approach: They consist of time

series sharing the same complicated (mixture) marginal dis-

tribution, the same covariance functions, but different joint

distributions (cf. Section 4).

2. JOINT DISTRIBUTIONS AS MATRIX PRODUCT

General Framework. Let us first define a general formal-

ism for the construction of joint distribution functions of ran-

dom vectors XN , inspired from non equilibrium statistical

physics models (cf. e.g. [5, 6, 7]) and based on products of

matrices of distributions. Let Rd(x) denote a d-dimensional

matrix with entries

Rd(x)i,j = Ei,jP(x)i,j , (1)

where P(x)i,j are valid distribution functions and Ei,j arbi-

trary positive numbers, forming the matrix E . Let A denote

an arbitrary, but fixed strictly positive and non-random, ma-
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trix and L(M) the linear form applied to matrix M defined as

L(M) = tr
(
ATM

)
.

Further, let X ≡ {Xn}1≤n≤N denote a random vector, of

chosen size N , explicitly defined via its joint distribution:

P(x1, . . . , xN ) =
L
(∏N

k Rd(xk)
)

L (EN )
, (2)

where
∏N

k Rd(xk) = Rd(x1) . . . Rd(xN ) denotes the ori-

ented product (i.e., the order of the factors is fixed and can-

not be changed). It is straightforward to check that the joint

choice of strictly positive entries for matrices A and E , and of

valid distribution functions for P(x)i,j is sufficient to ensure

that Eq. (2) defines a valid joint distribution function.

From these definitions, calculations and matrix manipu-

lations not reported here enabled us to derive a number of

statistical properties of the vector {Xn}1≤n≤N . Its univari-

ate (marginal) distributions and one-sample moments take ex-

plicit forms (with M(q) =
∫
R
xqRd(x)dx):

P(Xk = x) =
L (Ek−1Rd(x)EN−k

)
L (EN )

, (3)

E [Xq
k ] =

L(Ek−1M(q) EN−k)

L(EN )
. (4)

Furthermore, the joint p-sample moments read (with p ∈ N ,

k1 < · · · < kp and qr the order associated to the entry xkr
):

E
[∏p

r=1 X
qr
kr

]
=

L
(
Ek1−1

(∏p−1
r M(qr) Ekr+1−kr−1

)
M(qs) EN−ks

)
L(EN )

(5)

Stationary time series. Let us now focus on specific

choices for matrices A and E, of interest here to construct

stationary time series:

Ai,j =
1

d
, E = αId + βJd, with α+ β = 1, (6)

Id is the d-dimensional unity matrix and Jd ∈ Md(R) defined

as:

Jd =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0

0
. . . 1

1 0 · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Such choices for A and E enabled us to show (full calcu-

lations not reported here) that:

∀E , n ∈ N L(En) = 1, (7)

∀M, E , (n, r) ∈ N
2, L(MEr)

L(En) = L(M). (8)

This further enables us to obtain that the results above can be

specified as:

P(Xk = x) =
1

d

∑
i,j

Ei,jPi,j(x), (9)

E [Xq
k ] = L (M(q)) , (10)

E

[
p∏

r=1

Xqr
kr

]
= L

((
p−1∏
r

M(qr) Ekr+1−kr−1

)
M(qp)

)
.

(11)

These relations clearly indicate that the vector {Xn}1≤n≤N

can now be regarded as a stationary time series: All joint

statistics depend only on time differences, kr+1 − kr. Both

its marginal and joint probabilities are prescribed by the

choices of E and of the Pi,j . Also, Eq. (11) constitutes a key

result with respect to applications as it clearly shows that the

joint statistics of order q of the time series can be prescribed

by the sole selection of a suitable M(q) matrix. This will be

explicitly used in Section 4.

The form of the covariance function can be further stud-

ied. The eigenvalues of E read λk = α + βe
2ıπk

d and can

be rewritten as λk = e
− 1

τk e
±ı 2π

Tk , k = 1, . . . �d/2� (where

�z� stands for the integer part of z). For ease of notations, let

(CM )k =
∑

l Ml,k, (LM )k =
∑

c Mk,c and let F denote the

(non-normalized) discrete Fourier transform. Then, detailed

calculations enabled us to show that, for any q,

E [Xq
0X

q
t ]− E [Xq

0 ]E [Xq
t ] =

�d/2�∑
k=1

mkRe

{
F(LM(q))kF(CM(q))ke

− t−1
τk e

ı
2π(t−1)

Tk

}
,

(12)

where mk = 1 if 2k = d and 2 otherwise. This result shows

that τk and Tk are characteristic dependence lengths and pe-

riodicities that depend on the joint choices of d and α. More

precisely, from the definition of τk = −1/ ln |λk|, we can

show that τk ≈αβ→0

[
αβ
(
1− cos 2πk

d

)]−1
. Enlarging the

dimension d of the matrices Rd increases both the number of

distinct dependence lengths as well as the ratio of the smallest

to the largest such characteristic lengths, which varies asymp-

totically as (d/2π)2/2.

Therefore, choosing d, α, hence E , and the sequence of

Pi,j enables to select the marginal and joint distributions ac-

cording to given targets. Section 4 will illustrate the potential

of the method.

3. SYNTHESIS: HIDDEN MARKOV CHAIN

While the compact form of P(X) in Eq. (2) constitutes a gen-

eral framework for the analytical derivation of numerous sta-

tistical properties of X , it provides few insights with respect

to its numerical synthesis. To address this issue, a reformu-

lation of Eq. (2) into the form of a Hidden Markov Model is

now devised.
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Fig. 1. Transition graph. For d = 6 and E = αId + βJd

First, extending to product of N matrices the fact that

the entries of the matrix product (ABC) reads (ABC)i,j =∑
k,l ai,kbk,lcl,j , we have been able to recast Eq. (2) into:

P(x1, . . . , xN ) =
∑
Γ

κ(Γ)
N∏

k=1

P(xk)Γk−1,Γk
, (13)

with Γ ≡ {Γ0, . . . ,Γk, . . . ,ΓN} ∈ [1, . . . , d]N+1 and

κ(Γ) =
AΓ0,ΓN

L(EN )

N∏
k=1

EΓk−1,Γk
. (14)

It is straightforward to verify that
∑

Γ κ(Γ) = 1, hence

κ(Γ) can be interpreted as the probability function of Γ.

Moreover, Eq. (13) shows that P(X) can be read as a

κ(Γ)-weighted mixture of laws, each defined as the prod-

uct
∏N

k=1 P(xk)Γk−1,Γk+1
.

Second, from Eq. (14), using the special form of A and E ,

it can be shown that:

P(Γk = j|Γ0 = γ0, . . .Γk−1 = γk−1) =

Eγ0,γ1 . . . Eγk−1,j

∑
Γ Ej,Γk+1

. . . EΓN−1,ΓN

Eγ0,γ1 . . . Eγk−2,γk−1

∑
Γ Eγk−1,Γk

. . . EΓN−1,ΓN

= Eγk−1,j = P(Γk = j|Γk−1 = γk−1)

(15)

and hence that Γ is a homogeneous d-state Markov chain,

with transition probability matrix:

P(Γk+1 = j|Γk = i) = Ei,j . (16)

Hence, E can be recast as the transition matrix of the Markov

chain Γ, as illustrated in Fig. 1.

Third, the final step required for numerical synthesis is to

derive the initial distribution for Γ0. Eq. (14) enabled us to

show that it should follow a uniform distribution:

P(Γ0 = i) =
1

d
. (17)

Therefore, the time series Xk, as defined from Eq. (1),

can be read and interpreted as a Hidden Markov Model, with

2 hidden states: the current state Γk and the previous state

Γk−1.

Combining Eqs. (16) and (17), a synthesis algorithm can

be sketched as follows:

Step 1 : Initialization: Use Eq. (17) to generate the state Γ0.

Step 2 : Iteration on k:

i) Choose at random state Γk, using Eq. (16),

ii) Generate Xk according to PΓk−1,Γk
.
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Fig. 2. Numerical Synthesis. Two different times series

with the same marginal distribution (mixture of two Gaus-

sians, σ1 = 0.5, σ2 = 2), the same covariance functions

(chosen as δ functions) but different covariance functions for

their squares, hence different prescribed joint distributions

(α = 0.98). Left side X , right side Y . First line, one re-

alization of the time series. Then, from top to bottom, es-

timated (solid black lines) and theoretical (dashed colored

lines) marginals, correlation functions and correlation func-

tions for the squared time series.

To illustrate the potential of the proposed time series the-

oretical construction and synthesis procedure, a pedagogical

example is proposed and the construction of the targeted sta-

tistical properties is devised: It consists of a pair (X,Y ) of

processes sharing the same marginal distributions (a mixture

of two Gaussian laws), the same autocovariance functions (a

δ function, i.e., no correlation), but different joint distribu-

tions, hence different higher order statistic dependences. In

this example, the dependence of the 4−th order statistics will

be prescribed.

We select d = 6 and E = αId + βJd. For the sake

of simplicity, the univariate (or marginal) distributions is

set to be a mixture of two Gaussian distributions: p(x) =
1
2 (N0,σ1(x) +N0,σ2(x)). For that case, it is natural to envis-

age that the matrix P consists only of Gaussian distributions.
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Note however that this is not the sole possibility. This restric-

tion implies that N0,σ1 and N0,σ2 must appear exactly three

times both in the principal and upper circular diagonals of P .

In other words, selecting the univariate distribution fixes the

number of occurrences of each law in matrix P , but not their

position in the matrix.

Moreover, to make the example convincing, we chose

the covariance functions of both X and Y to be δ-functions.

These two time series will hence have no autocorrelation but

(higher-order) dependencies. To achieve this, it is sufficient

that matrix M(1) is a zero matrix (cf. Eq. (11)). In our

example, this is automatically obtained due to the choice of

zero-mean distributions: N0,σ1 and N0,σ2 .

These two time series have hence the same marginal dis-

tributions and covariance functions. They are yet different by

construction as we now impose that they have different joint

distributions. Taking into account the circularity of the tran-

sition graph in Fig. 1, there exist 80 distinct choices of P ,

consisting of exactly 6 entries set to N0,σ1 and 6 entries set

to N0,σ2
, leading to different joint distributions. Making use

of Eq. (12) and of the explicit form of the eigenvalues of E
for d = 6 enables us to show that E [Xq

0X
q
t ]−E [Xq

0 ]E [Xq
t ],

for any q, stems from the superimposition of three distinct

exponential terms whose characteristic lengths, we derived

asymptotically: τ1 ≈
β→0

2
β , τ2 ≈

β→0

3
2β and τ3 ≈

β→0

1
2β . The

actual choice for the entries of P fixes the complex valued

coefficients, associated to each of these correlation lengths

(cf. Eq. 12). As demonstrative examples, we selected for X:

PX
i,j = N0,σ1

if i even, and PX
i,j = N0,σ2

if i odd. Applying

Eq. (12) to that choice, shows that the sole τ3, i.e., the shortest

correlation length, appears in the auto-covariance of X2 (the

complex-valued coefficients associated to the two other cor-

relation lengths are forced to 0 by the specific choice made

here): E
[
X2

0X
2
t

] − E
[
X2

0

]
E
[
X2

t

]
= (σ1−σ2)

2

4 (α − β)t.
Conversely, choosing PY

i,j = N0,σ1
if 1 ≤ i ≤ 3 and PY

i,j =

N0,σ2
if 4 ≤ i ≤ 6 leads to E

[
X2

0X
2
t

] − E
[
X2

0

]
E
[
X2

t

]
=

(σ1−σ2)
2

d2

[
(α− β)t + 4Re

{
(2− β −√

3ıβ)λt−1
1

}]
. In that

case, both τ1 and τ3 contribute to the autocovariance of Y 2.

However, τ1 ≈ 4τ3 is dominant at large t and hence consti-

tutes the leading term. Using the synthesis procedure devised

in Section 3 for this pair of examples yields Fig. 2, show-

ing for times series X (left column) and Y (right column),

a particular realization, the estimated and targeted univariate

distributions, covariance functions and covariance functions

for the squared time series (from top to bottom). It clearly

shows that X and Y have the same marginal and covariance

but different joint distributions (as targeted).

Using the same construction procedure, other pairs of ex-

amples with the same marginals, same (non δ-) autocovari-

ance functions but different joint distributions could as easily

be devised. Mixture of Gaussians are used here by conve-

nience, but mixtures of any other valid distributions could just

as easily be reached.

5. CONCLUSION AND PERSPECTIVES

Inspired from Statistical Physics models, a general frame-

work enabling us to define the joint distributions of a random

vector X has been described. It has then been specified to

the definition of stationary time series, with control of their

joint distributions and explicit derivation of numerous of their

statistical properties. A remapping onto a Hidden Markov

Model enabled us to devise an efficient synthesis procedure,

available upon request (in MATLAB). Constructive examples

aiming at showing the potential of the tools were proposed.

This general framework will be further explored by depart-

ing from the restrictive choices made here for the matrices

A and E . This should notably enable us to define (and syn-

thesize numerically) vectors of dependent variables with

different marginal distributions and intricate dependencies.

Notably, the intriguing and promising special cases of non-

diagonalisable matrices E are expected to offer a much larger

versatility in the form of dependencies that can actually be

reached. This is under current investigations.
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