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ABSTRACT
We present a blind estimation algorithm for multi-input and multi-
output (MIMO) systems with sparse common support. Key to the pro-
posed algorithm is a matrix generalization of the classical annihilating
filter technique, which allows us to estimate the nonlinear parameters
of the channels through an efficient and noniterative procedure. An
attractive property of the proposed algorithm is that it only needs the
sensor measurements at a narrow frequency band. By exploiting this
feature, we can derive efficient sub-Nyquist sampling schemes which
significantly reduce the number of samples that need to be retained
at each sensor. Numerical simulations verify the accuracy of the pro-
posed estimation algorithm and its robustness in the presence of noise.

Index Terms— Blind channel estimation, MIMO systems, dis-
tributed sensing, low-rate sampling, annihilating filters

1. INTRODUCTION

Consider a multiple-input and multiple output (MIMO) system shown
in Figure 1, where L sensors take measurements of signals generated
by I sources. Connecting the sources to the sensors is a set of LI
channels, denoted by their impulse responses {hi,�(t)}. We study
two problems in this work:

1. Blind estimation: If neither the source signals nor the channel
information are known a priori, to what extent can one recover these
quantities from only the sensor measurements?

2. Low-rate sampling: Intuitively, when the number of sensors is
much greater than the number of sources (i.e., L � I), the signals
acquired at different sensors are highly correlated. Can one make use
of this correlation to reduce the sampling rate at each sensor?

The MIMO setup described above appears in numerous applica-
tions. In wireless communication systems, several antennas can send
out signals that are received by multiple users or multiple antennas
of a single user. The channel states are usually unknown and can
change (slowly) over time. To probe the channels, a common ap-
proach is to periodically send out known training (“pilot”) signals
[1, 2]. The success of this channel estimation scheme requires co-
operation and accurate synchronization between all the sources and
receivers, whose difficulty makes blind estimation a very attractive al-
ternative. The MIMO setup in Figure 1 also models many distributed
sensing schemes using wireless sensor networks (e.g., sound acquisi-
tion, underwater target tracking, and binaural hearing aids). In these
applications, the channels can only be estimated in a blind fashion,
as there is no coordination between the sources and receivers. Fur-
thermore, the distributed nature of the sensors and the resulting tight
energy budget make it highly desirable to explore low-rate sampling
schemes, which can help reduce the amount of data that need to be
transmitted through the network.

Blind estimation of MIMO systems has been previously studied
in the literature. Existing approaches either exploit statistical priors
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Fig. 1. A MIMO system where I sources and L sensors are linked
through a collection of LI channels {hi,�(t)}.

on the sources (see, e.g., [3]), or impose deterministic constraints on
the unknown channels [4, 5]. In this work, we do not assume any
knowledge on the source signals, and instead impose constraints on
the channels. More specifically, we consider the case that all channels
are sparse and have some common support, i.e.,

hi,�(t) =

K∑
k=1

c
(i,�)
k δ(t− tk), (1)

where
{
c
(i,�)
k

}K

k=1
are the unknown coefficients of the impulse re-

sponse linking the ith source to the �th sensor, and {tk}Kk=1 are the
unknown common support of all the channels.

The sparse common support (SCS) model [6, 2] is a reasonable
assumption for many real-world channels. Sparsity is often observed
in multipath environments, where each individual path gives rise to an
impulse in the channel response function [1, 7]. The common support
assumption is relevant when the distances between sensors are much
smaller than distance traveled by the electromagnetic (or sound) wave
in a time related to the inverse signal bandwidth (see [2] for a more
detailed justification). In this case, certain frequency subbands of the
channel response functions are well approximated by the SCS model,
even though the full channel response functions might not agree with
this assumption.

The rest of the paper is organized as follows. After a precise def-
inition of the MIMO system and SCS model in Section 2, we present
two main contributions in this paper: Section 3 describes a novel blind
estimation algorithm based on generalized annihilating filters [8, 9];
The proposed algorithm only requires a small number of frequency
samples of the sensor measurements, and therefore naturally leads to
a distributed low-rate sampling scheme, which we briefly discuss in
Section 4. Numerical results in Section 5 verify the effectiveness of
the proposed algorithm and its robustness under a wide range of chan-
nel noise levels. We conclude the paper in Section 6.
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2. PRELIMINARIES

2.1. MIMO System Formulations

Consider a MIMO system with I sources x1, x2, . . . , xI and L sen-
sors y1, y2, . . . , yL. The signal measured at each sensor is the sum of
all source signals going through the corresponding channels, i.e.,

y�(t) =

I∑
i=1

hi,�(t) ∗ xi(t), 1 ≤ � ≤ L, (2)

where {hi,�(t)} are the channel responses as defined in (1).
We suppose that all the signals are of finite-length and can thus

be extended to periodic signals, for some period T . By computing the
Fourier series on both sides of (2), we can write the frequency-domain
counterpart of (2) in a compact matrix-vector form

Y [m] = H[m]X[m], (3)

where X[m]
def
=
[
Xi[m]

]
I×1

,Y [m]
def
=
[
Y�[m]

]
L×1

and H[m] =[
Hi,�[m]

]
L×I

1 denote the mth Fourier coefficients of the source sig-

nals, sensor measurements, and channel responses, respectively.

2.2. The SCS Model in the Fourier Domain

In the Fourier domain, the channel impulse responses of the SCS
model (1) can be written as

Hi,�[m] =

K∑
k=1

c
(i,�)
k um

k , (4)

where uk
def
= e−j2πωtk/T . A fundamental property of these sum-of-

exponential signals is that they can be “annihilated” by a (K +1)-tap
filter, i.e., there exist a set of K+1 coefficients {ak}0≤k≤K such that

K∑
k=0

akHi,�[m− k] = 0, for all m. (5)

Furthermore, the exponents {uk} are the roots of the polynomial
formed by the annihilating coefficients [8, 9], i.e.,

a0x
K + a1x

K−1 + . . .+ aK−1x+ aK = a0

K∏
k=1

(x− uk). (6)

The above expression implies that the annihilating coefficients {ak}
are fully determined by the exponents {uk} and are independent of the

weights
{
c
(i,�)
k

}
in (4). In the SCS model, all the channel responses

have the same support, and therefore their Fourier transforms Hi,�[m]
share the same exponents {uk}. It follows that we can generalize the
classical annihilating filter in (5) to the following matrix form

K∑
k=0

akH[m− k] = 0. (7)

This “matrix annihilation” formula captures all the SCS properties in
the MIMO system and will play an important role in the proposed
blind estimation algorithm described in Section 3.

2.3. Inherent Ambiguities

Given the sensor measurements Y [m] as defined in (3), our goal is
to simultaneously estimate the unknown source signals X[m] and the
unknown channels H[m], subject to the constraint that the channels
H[m] satisfy the SCS model as in (4).

To be clear, it is not possible to fully determine X[m] and H[m]
from the sensor measurements Y [m]. In fact, one can easily verify

1Note that Hi,�[m] lies at the (�, i)-th position of matrix H[m].

the following from our mathematical formulation: If {X[m],H[m]}
is a solution to (3) with H[m] satisfying (4), then

{ξ−mE−1X[m], ξmH[m]E} (8)

is also a valid solution, where E is an arbitrary non-singular constant

matrix and ξ
def
= ej2πτ/T for some τ ∈ R. In the time domain, the

phase term ξm in (8) points to an inherent ambiguity in time delay: We
can always set the sources and channels to {xi(t+ τ), hi,�(t− τ)}
for arbitrary τ without changing their convolution results. The ma-
trix E in (8) indicates that we can only reconstruct the coefficients of
{X[m],H[m]} up to the linear subspaces they expand.

Finally, we note that the above ambiguities become trivial for
single-input and multiple-output (SIMO) systems, as the matrix E de-
generates to a scalor. In this case, we aim to reconstruct the unknown
source and the channels up to a common time shift and a scalar multi-
plication.

3. THE PROPOSED BLIND ESTIMATION ALGORITHM

In this section, we present our blind estimation algorithm for sparse
MIMO systems with common support. For simplicity of exposition,
we first consider the SIMO case, which provides useful insight on
how to deal with the unknown multipath channels. We then discuss
the generalization to the MIMO case.

3.1. The SIMO Case

In a SIMO system, each output y�(t) is the result of a single source
signal x(t) going through the corresponding channel h�(t). It follows
that the Fourier domain system equation (3) can be simplified as

Yl[m] = H�[m]X[m], 1 ≤ � ≤ L, (9)

where {Y�[m]} are known but {H�[m]} and X[m] are unknown. Us-
ing the matrix annihilation property of Hl[m]’s in (5), we can prove
the following result.

Proposition 1 In a SIMO system with SCS channels, if the number of
sensors L is greater than or equal to the cardinality of the channel
support K, i.e.,

L ≥ K

and if there exists a subband of at least K + 3 continuous Fourier
coefficients such that X[m] �= 0 for m0 ≤ m < m0 + K + 3, then
the system can be fully resolved up to two free parameters, namely an
amplitude ambiguity e and a delay ambiguity τ .

Remark: The proposition indicates that a SIMO system can always
be fully resolved from the sensor measurements as long as we have
enough sensors in the system. The requirement that X[m] �= 0 at
K + 3 consecutive frequency indices are very mild. In fact, it holds
with probability one if the source signal X[m] is drawn from any con-
tinuous probability distribution.

Proof: For any m ∈ [m0,m0 +K + 2], we can rewrite (9) as

H�[m] = Y�[m]/X[m]. (10)

On substituting this equality into (5) and defining bk,m
def
= ak

X[m−k]
,

we get

K∑
k=0

ak
Y�[m− k]

X[m− k]
=

K∑
k=0

Y�[m− k]bk,m = 0. (11)

For every fixed m, (11) represents L different linear equations (for
1 ≤ � ≤ L) with K + 1 unknowns. Given L ≥ K, we can show
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that this system of linear homogeneous equations is always solvable,

up to an unknown factor dm. It follows that we can obtain b̃k,m
def
=

dmbk,m = akdm
X[m−k]

, or equivalently, in a matrix form,

B̃ =(̃bk,m) =

⎡⎢⎢⎢⎢⎣
a0dm
X[m]

a0dm+1

X[m+1]

a0dm+2

X[m+2]
· · ·

a1dm
X[m−1]

a1dm+1

X[m]

a1dm+2

X[m+1]
· · ·

a2dm
X[m−2]

a2dm+1

X[m−1]

a2dm+2

X[m]
· · ·

...
...

...
. . .

⎤⎥⎥⎥⎥⎦

=Λa

⎡⎢⎢⎢⎢⎣
1

X[m]
1

X[m+1]
1

X[m+2]
· · ·

1
X[m−1]

1
X[m]

1
X[m+1]

· · ·
1

X[m−2]
1

X[m−1]
1

X[m]
· · ·

...
...

...
. . .

⎤⎥⎥⎥⎥⎦Λd, (12)

where Λa and Λd are diagonal matrices with entries ak’s and dm’s,
respectively, and in the middle is a Toeplitz matrix.

Through simple manipulations of the terms in B̃, we can verify
the following relation

b̃k−1,mb̃k+1,m+1

b̃k,mb̃k,m+1

=
ak−1ak+1

a2
k

def
= sk, (13)

which, upon setting a0 = 1, can be used to solve for the rest of the
ak’s up to one degree of freedom, i.e.,

ak =

(
k−1∏
j=1

sk−j
j

)
ak
1 . (14)

It can be shown that the unknown term ak
1 in the above expression

comes from the intrinsic ambiguity of time delay τ , and can be elimi-
nated by simply setting a1 = 1. We omit further details on this due to
space constraint.

With the annihilating coefficients {ak} obtained in (14), we can
compute the unknown exponents {uk} (and thus the time delay pa-
rameters {tk}) by factorizing the polynomial in (6). Finally, for fixed
{uk}, the input-output relation in (3) becomes a set of linear equa-

tions. The remaining unknowns (i.e.,
{
c
(�)
k

}
and X[m]) can then be

obtained by inverting this linear system. �

3.2. Generalizations to the MIMO Case

Now we consider a general MIMO system. In this case, the number
of unknowns (including I source signals and LI channels) is much
greater than that under the SIMO case (one source signal and L chan-
nels). To uniquely determine these parameters, we consider a multi-
frame setting, which can be realized by letting the sources send out
multiple frames, or more simply, by receiving a long sequence of sig-
nals and dividing them into frames on the sensor side. Given J con-
secutive frames, the relation (3) can be written as[
Y (1)[m] . . . Y (J)[m]

]
= H[m]

[
X(1)[m] . . . X(J)[m]

]
where X(j)[m] ∈ R

I and Y (j)[m] ∈ R
L are, respectively, the input

and output signals at the jth frame.
In what follows, we make a mild assumption that the J vectors

{X(j)[m]}1≤j≤J are “rich” enough so that they span the entire space
R

I , i.e.,
span

{
X(1)[m], . . . ,X(J)[m]

}
= R

I . (15)

Under this assumption, the matrix
[
Y(1)[m] . . . Y(J)[m]

]
spans

the same subspace of RL as the range space of the matrix H[m]. We

can then perform an SVD on
[
Y(1)[m] . . . Y(J)[m]

]
and obtain

an L-by-I matrix Z[m] whose columns are orthogonal and span the
range space of H[m]. It follows that there exists a non-singular I × I
matrix C[m] such that

Z[m]C[m] = H[m]. (16)

We note that the above equality is simply a matrix extension to (10),
where Z[m] (as obtained from the SVD of [Y(1)[m] · · ·Y(J)[m]])
is analogous to Y�[m], and C[m] (an unknown coefficient matrix) is
analogous to 1/X�[m]. Similar techniques to those used in the proof
of Proposition 1 can then be employed for solving the MIMO system.
Due to space constraint, we merely state the following proposition and
leave its proof to [10].

Proposition 2 In a MIMO system with SCS channels, let I be the
number of sources, L the number of sensors and K the cardinality of
the channel support. If

L ≥ KI,

and if there exists a subband of at least K+3I frequency indices such
that (15) holds for m0 + 1 ≤ m < m0 + K + 3I , then the MIMO
system can be fully resolved up to an amplitude ambiguity matrix E
and a delay ambiguity τ .

4. LOW-RATE SAMPLING SCHEME

We see from the requirements of Propositions 1 and 2 that the pro-
posed blind estimation algorithm only needs a small subband of sen-
sor measurements. Consequently, we can employ a similar approach
as used in [1] to derive a distributed low-rate sampling scheme, which
is summarized by the following proposition.

Proposition 3 Under the same condition as stated in Proposition 2,
perfect reconstruction on all the sensor measurements can be achieved
with probability one, given that we keep L ≥ KI sensor samples on
a subband of K + 3I frequency indices and L′ ≥ I sensor samples
on all the other frequency indices.

Remark: This proposition indicates that dense sampling at all the sen-
sors is only required in a limited subband (of K + 3I frequency in-
dices). Beyond this subband, fewer sensor samples are required, and
we can still fully reconstruct all the sensor measurements at a central
receiver.

Proof: First consider a SIMO system. If we have K + 3 consecutive
frequency indices of L ≥ I sensors, Proposition 1 shows that we can
recover all the channel parameters. Given the recovered channel, we
only need one of the sensors to work on the other subband to estimate
the source signal.

Analogously, in MIMO systems, we can recover all the channel
parameters with L ≥ KI sensor samples on K + 3I consecutive
frequency indices, as shown in Proposition 2. After that, we only need
I sensor measurements on each frequency index to uniquely determine
the I source signals. �

5. NUMERICAL EXPERIMENT

In this section we verify the proposed blind estimation algorithm
through numerical experiments. In our simulations, we let ran-
domly generated source signals from a white Gaussian distribution
to go through the unknown channels, and the retrieved sensor mea-
surements are contaminated by additive white Gaussian noise. The
channel delay parameters {tk}Kk=1 are uniformly distributed and the

amplitude parameters
{
c
(i,�)
k

}K

k=1
have independent Gaussian distri-

butions. Reconstruction results are then directly compared with the

3895



0

10

20

30

40

50

60

70

80

20 25 30 35 40 45 50 55 60 65 70 75 80
Channel SNR (dB)

R
ec

on
st

ru
ct

io
n 

S
N

R
 (

dB
)

Fig. 2. Reconstruction result of a MIMO system. The experiments are
performed 100 times (with different random seeds) at each SNR point.
The box plot shows the median (read line), 25th and 75th percentile
(blue boxes) and the extreme data points (black lines), respectively.

ground truth. Since the MIMO systems bear an intrinsic subspace
ambiguity (see Section 2.3), we compute the reconstruction errors

as the distances of the reconstructed signal X̂ to the subspace of all
possible X’s that explain the output, i.e.,

Err = ‖X̂ −EX‖22, with E = X̂X†,

where X† = XT (XXT )−1 is the pseudo-inverse of the matrix X .

Figure 2 shows the reconstruction errors with respect to the chan-
nel signal-to-noise ratios (SNRs). In our experiment, we use L = 9
sensors to sense I = 2 sources. The number of frames is equal to
J = 6, with the length of each frame set to M = 45. The com-
mon support of the sparse channels contains K = 4 impulses. We
observe that near perfect reconstruction can be achieved at relatively
high channel SNR regimes (50 dB and above). At lower SNR levels
(around 25–35 dB), the algorithm still provides stable and accurate
estimates.

The noise robustness of our reconstruction algorithm benefits
from the multi-frame setup of the system. In general, the more frames
we can use, the better recovery result we get. On the other hand, we
found that the loss of accuracy by reducing the number of frames can
be effectively compensated if we apply a local optimization algorithm,
which can significant enhances the performance even when only one
frame is available. Starting from the estimations obtained from the
proposed algorithm, we apply local iterative optimization to refine the
parameters {uk} (and equivalently, {tk}) so that they are better fits
for the observation model (3) and SCS constraint (4). Figure 3 shows
the estimation results on a SIMO system by using a single frame. We
can see that the improvement brought by the local optimization (re-
finement) is substantial, and the resulting reconstruction performance
is even comparable to that obtained by using the ground truth {tk}.

6. CONCLUSION

We presented a novel algorithm for estimating MIMO systems with
sparse common support. Based on a matrix generalization of the an-
nihilating filter technique, the proposed algorithm is able to blindly
estimate the unknown source signals and the channel information by
using only the sensor measurements. A useful property of the pro-
posed algorithm is that it only needs sensor measurements on a narrow
frequency band. By exploiting this property, we derived an efficient
low-rate sampling scheme, which can significantly reduce the num-
ber of samples that need to be retained at each sensor. Numerical
experiments verify that the proposed algorithm can achieve perfect re-

Fig. 3. Reconstruction result of a SIMO system. This figure shows
the reconstruction SNRs of three different approaches. The first (blue,
bottom) uses the estimated tk directly from the output of the proposed
algorithm; the second approach (red, middle) uses the optimized pa-
rameters tk as described in the text; and the third approach (cyan, top)
uses the (unknown) ground truth tk. M denotes the number of fre-
quency points used for reconstruction.

construction in the noise-free case and can obtain stable and accurate
estimations in the presence of modest noise.
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