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ABSTRACT

Rank minimization problems, which consist of finding a ma-

trix of minimum rank subject to linear constraints, have been

proposed in many areas of engineering and science. A spe-

cific problem is the matrix completion problem in which a

low rank data matrix is recovered from incomplete samples

of its entries by solving a rank penalized least squares prob-

lem. The rank penalty is in fact the l0 norm of the matrix

singular values. A convex relaxation of this penalty is the

commonly used l1 norm of the matrix singular values. In this

paper we bridge the gap between these two penalties and pro-

pose a simple method for solving the lq , q ∈ (0, 1), penalized

least squares problem for matrix completion. We illustrate

with simulations comparing our method to others in terms of

solution quality.

Index Terms— Matrix completion, matrix rank mini-

mization, sparse, lq optimization.

1. INTRODUCTION

In many applications noisy measurements Y are made of a

limited number of entries in a matrix of interest X. Matrix

completion problems deal with completing X based on the

observed entries such that the resulting matrix satisfies spe-

cific properties [1,2]. Here we focus on recovering a low rank

matrix from a given subset of its entries. This is a recurring

problem in applications such as collaborative filtering [2], di-

mensionality reduction [3], and multiclass learning [4]. A

very popular example is the Netflix competition [5], where the

rows of X correspond to viewers and the columns to viewer

movie ratings. In this case, out of the potential 8.6 billion

entries only 1.2% are observed on average. Thus, the task is

to complete X in order to predict the unrated movie ratings.

It is assumed that the completion of X has a low rank struc-

ture since the movies could be grouped into a small number

of genres.

In theory and practise nuclear norm minimization is

known to produce low rank matrix solutions [5–9]. Just

as the l1 norm promotes sparsity in sparse signal reconstruc-

tion [10], the nuclear norm, defined as the l1 norm of matrix
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singular values, should promote matrix low rank in matrix

completion.

We assume noisy incomplete observations Ym×n of a

matrix Xm×n according to the model Yij = Xij + εij
where (i, j) ∈ Ω ⊂ {1, . . . ,m} × {1, . . . , n} and the noise

εij is i.i.d. Gaussian. Then the l1 matrix completion prob-

lem reconstructs X by the l1-penalized least squares problem:

min
X

1

2

∑
(i,j)∈Ω

(Yij −Xij)
2 + λ‖X‖1 (1)

where ‖ · ‖1 denotes the nuclear norm and λ > 0 is a penalty

parameter. The first term penalizes the error between the ob-

served entries in Y and corresponding entries in X, while the

second acts as a rank surrogate and is supposed to penalize

the rank of X.

From experimental studies it was evidenced that the nu-

clear norm could outperform the rank penalized estimator (l0
norm1 of the singular values) in terms of prediction accu-

racy [5]. A natural analogy is drawn with model selection

in linear regression comparing the best subset regression (l0
regularization) with the LASSO (l1 regularization) [10]. In

situations with moderate sparsity the LASSO outperformed

best selection in terms of prediction accuracy.

On the other hand, there has recently been a significant

interest in the use of the lq , q ∈ (0, 1) penalty in variable

selection and sparse reconstruction [11, 12]. The penalty is

the sum of the absolute value of its components raised to the

power of q, and naturally, one expects that using it allows a

less biased (and/or sparser) solution to be found than using

the l1 norm. This was evidenced in extensive computational

studies [11, 13].

Motivated by the above, the purpose of this paper is to

present a method for solving (1) with the more general lq ,

q ∈ (0, 1), rank penalty instead of the nuclear norm. This will

be referred to as the lq matrix completion problem. The new

method, which we call lqPG (lq Proximal Gradient) is based

on the majorization-minimization (MM) technique [14] that

replaces a difficult minimization problem by a sequence of

easier ones.

The remainder of the paper is organized as follows. In

section 2 we state the lq matrix completion problem. In sec-

tion 3 we describe the lqPG method and section 4 contains

1it is a quasi norm rather than a norm
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comparisons between lqPG and two other well known meth-

ods in matrix completion. Finally, in section 5 conclusions

are drawn.

Notation: I : R → R denotes the indicator function where

I(x > a) = 1 if x > a and 0 otherwise. For any Xm×n and

Zm×n the Frobenius inner product and norm are respectively

denoted by 〈X,Z〉F � tr(XTZ) and ‖X‖F �
√〈X,X〉F .

Finally, diag(x) denotes the diagonal matrix with the vector

x on its main diagonal.

2. PRELIMINARIES

We define the lq matrix penalty ∀q ∈ (0, 1): ‖X‖q �
∑

i σ
q
i

where σi’s are the singular values of X. So the lq matrix

completion problem is:

min
X

J(X) � 1

2

∑
(i,j)∈Ω

(Yij −Xij)
2 + λ‖X‖q (2)

where λ > 0. Throughout the remainder of the paper we

let: f(X) � 1/2
∑

(i,j)∈Ω(Yij − Xij)
2, and the gradient:

∇f(X) is Lipschitz continuous with Lipschitz constant Lf .

3. THE ALGORITHM

In this section we introduce the MM-based lqPG algorithm

to iteratively reduce J in (2). Considering the following

quadratic approximation of J(X):

Q(Z,X) � f(X)+〈∇f(X),Z−X〉F+
L

2
‖Z−X‖2F+λ‖Z‖q

with L ≥ Lf , by using [14, Lemma 2.1]: J(Z) ≤ Q(Z,X),
∀X,Z. Thus, Q is used as the majorizer of J . We next define

the point to set map:

F (X) �
{
X′ : X′ = argmin

Z
Q(Z,X)

}
which can have more than one element as Q is not convex.

Using it we state our algorithm:

The lqPG Algorithm
Given X0, repeat ∀k ≥ 0. Choose

(1) Xk+1 ∈ F (Xk) if Xk /∈ F (Xk)

(2) Xk+1 = Xk otherwise

Given the current iterate X, if X′ ∈ F (X) then X /∈ F (X)
iff Q(X′,X) < Q(X,X), which is easy to check. In any

case, J(X′) ≤ Q(X′,X) ≤ Q(X,X) = J(X).

The rest of this section focuses on the elements in F (X).
Defining μ � λ/L and G � X−L−1∇f(X), by rearranging

and removing constant terms

argmin
Z

Q(Z,X) = argmin
Z

Φ(Z) � 1

2
‖Z−G‖2F + μ‖Z‖q

It can be shown [15], that G and the minimizers of Φ(Z)
have the same left and right singular vectors. So, supposing

G has rank r, let Um×r and Vn×r be its left and right sin-

gular matrices, and σ1, . . . , σr be its positive singular values.

Substituting Z = Udiag(d1, . . . , dr)V
T in Φ(Z) where di’s

are the r singular values of Z, by unitary invariance of the

Frobenius norm

Φ(Z) =

r∑
i=1

φ(di) : φ(di) �
1

2
(di − σi)

2 + μdqi (3)

which is separable in di and Φ is thus minimized by minimiz-

ing each φ(di), di ≥ 0. As a result

Udiag(τ(σ1), . . . , τ(σr))V
T ∈ F (X)

where τ(σi) ∈ argmindi≥0 φ(di) for i = 1, . . . , r. Then

δ � [2μ(1− q)]
1

2−q and h � δ + μqδq−1 (4)

Theorem 1. For i = 1, . . . , r :

(a)
τ(σi) =

{
x̂(σi) σi > h

0 otherwise
(5)

where for σi > h we have:

x̂(σi) = σi − μqx̂(σi)
q−1 ∈ (δ, σi) (6)

We give an iterative procedure for obtaining x̂(σi):

(b) For σi > h let ρ(x) � σi − μqxq−1 and generate an

iterative sequence by:

xk+1 = ρ(xk), x0 ∈ [δ, σi] (7)

Then xk → x̂(σi) as k → ∞.

A sketch of the proof is given in the appendix.

Remark 1. Theorem 1 and lqPG are valid with minor ad-

justments for q = 0 and q = 1: details are in [15]. So for

simulation purposes we allow for q ∈ [0, 1] in lqPG.

Remark 2. While completing [15] we became aware of [16]

with an algorithm for solving (2). However, their algorithm

is flawed because their minimization of φ is wrong. As σi

> 0, [16] claims a minimizer of φ is max{0, σi − μqσq−1
i }

= (σi − μqσq−1
i )I(σi > σc) where σc = [μq]

1
2−q (see

[16, (15)]). Assuming we used a single iteration of (7) with

x0 = σi to obtain (6), we see that the claimed minimizer

is wrong because σc = h, i.e. the thresholding is wrong.

As a result, the algorithm in [16] has an incorrect update

and by [5, Remark 1] will not, as claimed, be a solution to

argminZ Q(Z,X) when having the same left and right sin-

gular vectors as G.

A global minimizer X of J satisfies: X ∈ F (X), details

are in [15]. Thus, we state the following important theorem:

Theorem 2. Suppose {Xk}k∈N is an infinite sequence gener-

ated by lqPG . Then for any cluster point X∗ of the sequence,

X∗ ∈ F (X∗).

The proof is given in [15].
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4. SIMULATIONS

Here we compare lqPG with state-of-the-art convex and

non-convex matrix completion algorithms from [5]: SOFT-

IMPUTE and HARD-IMPUTE respectively. The SOFT-IMPUTE

algorithm is designed for solving the l1 matrix completion

problem (1) and is equivalent to ISTA [14] and FPC [9] with

unity step lengths. HARD-IMPUTE is designed for solving

the l0 matrix completion problem, i.e. (1) with the nuclear

norm replaced by the rank penalty.

The set Ω is uniformly random and we let |Ω|/(m × n)
denote the Sampling Ratio where |Ω| is the size of Ω. We

generate X with m = n = 100 and rank r′ = 10 as in [5, 9]

i.e. X = MNT where Mm×r′ and Nn×r′ are randomly

generated matrices with standard normal Gaussian entries.

In obtaining an algorithm estimator X̂ all algorithms are

initialized with X0 = 0, use warm starting [5, 9] and are

stopped after an equal number of iterations (> 2.5 × 103).

All computations are done in matlab and the matlab svd func-

tion is used. In lqPG, L = Lf = 1.

The signal to noise ratio and prediction error are both

defined as in [5], i.e.

SNR �
√

var(X)

var(ε)
and Epr �

∑
(i,j)/∈Ω(Xij − X̂ij)

2∑
(i,j)/∈Ω X2

ij

As in [5], we use Epr to measure the quality of X̂.

Sampling Ratio (%)

Algorithm 20 30 40 50

HARD-IMPUTE 0.9952 0.9863 0.9670 0.9528

SOFT-IMPUTE 0.9175 0.8186 0.6761 0.5668

lqPG 0.9175 0.7953 0.6217 0.5011

Table 1. Minimum average Epr for different algorithms. SNR =
1. For lqPG the optimal q = 1, 0.90, 0.75, 0.80 for the respective

sampling ratios.

Sampling Ratio (%)

Algorithm 20 30 40 50

HARD-IMPUTE 0.5564 0.1974 0.0424 0.0273

SOFT-IMPUTE 0.5801 0.2794 0.1290 0.0738

lqPG 0.3888 0.0801 0.0393 0.0265

Table 2. Minimum average Epr for different algorithms. SNR =
5. For lqPG the optimal q = 0.70, 0.26, 0.36, 0.31 for the respec-

tive sampling ratios.

Sampling Ratio (%)

Algorithm 20 30 40 50

HARD-IMPUTE 74 / 16 67 / 11 75 / 10 78 / 10

SOFT-IMPUTE 16 / 29 14 / 38 19 / 45 23 / 31

lqPG 16 / 10 10 / 10 10 / 10 10 / 10

Table 3. Average recovered rank corresponding to each Epr: in

Table 1 / Table 2 for different algorithms.
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Fig. 1. Average Epr for SNR = 1 and Sampling Ratio 40% ob-

tained with lqPG. The optimal (λ, q) = (80, 0.75) give the mini-

mum average Epr = 0.6217 in table 1 for this scenario.
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Fig. 2. Average Epr for SNR = 5 and Sampling Ratio 20% ob-

tained with lqPG. The optimal (λ, q) = (10, 0.70) give the mini-

mum average Epr = 0.3888 in table 2 for this scenario.
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Fig. 3. Average recovered rank corresponding to fig.1. The opti-

mal (λ, q) = (80, 0.75) give the rank (= 10) corresponding to the

minimum average Epr in fig.1 and given in table 3 for this scenario.
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With each algorithm 100 replicates of X̂ and thus Epr

were obtained for each of several tuning parameter(s): (λ, q)
for lqPG, and λ for HARD-IMPUTE and SOFT-IMPUTE.

Tables 1 and 2 show the minimum average Epr with re-

spect to the tuning parameter(s) for different algorithms. The

lqPG gives a better matrix estimator in terms of prediction ac-

curacy (and MSE [15]) with the optimal q ∈ (0, 1). From

Table 3, lqPG is also superior in terms of correct matrix rank

recovery. The contour plot examples in Fig.1, 2 and 3 were

obtained by lqPG and show the average Epr and rank respec-

tively for each (λ, q). The optimal (λ, q) in Fig.1 and 2 give

the minimum average Epr shown in tables 1 and 2.

5. CONCLUSION

We have developed a simple algorithm lqPG based on the

MM technique for solving the lq matrix completion problem

q ∈ (0, 1). In the simulation examples it was shown that

the lq rank penalty with q ∈ (0, 1) was very competitive and

provided improvement over the nuclear norm and rank re-

stricted penalties in terms of matrix rank recovery and model

prediction accuracy.

6. APPENDIX

Proof: (a) The proof is not as straight forward because it in-

volves careful consideration of cases for σi to find the correct
thresholding parameter.

Let φ′ denote the derivative of φ, di > 0. Also, let α �
[μq(1− q)]

1
2−q (> 0 and < δ), β � α+μqαq−1 and dopt(σi)

be the global minimizer of φ, di ≥ 0.

Now, φ′ has a unique global minimum at α and is strictly

increasing in di on both sides of α: details are in [15]. Since

the stationary points of φ are given by the roots of φ′, there

are two cases to consider: when φ′(α) ≥ 0 and φ′(α) < 0,

i.e. when minφ′ is above and below the di-axis respectively.

Considering φ′(α) ≥ 0: this means that either φ′ is posi-

tive ∀ di > 0 or that α is a stationary point of inflection of φ.

In either case, the global minimizer of φ is at 0 (the bound-

ary). By re-arranging, φ′(α) ≥ 0 is equivalent to σi ≤ β.

Thus dopt(σi) = 0 for σi ≤ β.

Considering φ′(α) < 0: since minφ′ is below the di-axis,

φ′ has a unique root on (α,∞), i.e. x̄(σi) ∈ (α, σi), which

is the only local minimizer of φ. Another root on (0, α) can

only be a local maximizer of φ: details are in [15]. Therefore,

it turns out that the global minimum of φ is either at x̄(σi)
or at 0 (the boundary) depending on which gives a lower φ
value. Now, φ(x̄(σi)) < φ(0) is equivalent to x̄(σi) > δ (δ
is from (4)) and by re-arranging, φ′(α) < 0 is equivalent to

σi > β. Thus:

dopt(σi) = x̄(σi)I(x̄(σi) > δ), σi > β (8)

noting the discontinuity when x̄(σi) = δ, which by re-

arranging is equivalent to σi = h (h is from (4)). Since

h > β, and x̂(σi) is strictly increasing in σi for σi > β:

details are in [15], using (8) we have dopt(σi) = 0 for

β < σi ≤ h and dopt(σi) = x̄(σi) ∈ (δ, σi) for σi > h.

Therefore, dopt(σi) = τ(σi) in (5).

(b) The map ρ maps elements from [δ, σi] to [δ, σi] and

is a contraction mapping on [δ, σi] complete. The result then

follows by the application of the standard Banach Fixed Point

Theorem: details are in [15].
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