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ABSTRACT

The problem is to establish the presence and subsequently to track a
target using multi-static Doppler shift measurements. The assump-
tion is that in the surveillance volume of interest a single transmitter
of known frequency is active with multiple spatially distributed re-
ceivers collecting and reporting Doppler-shift frequencies. The mea-
surements are affected by additive noise and also contaminated by
false detections. The paper develops a Bernoulli particle filter for
this application and analyzes its performance by simulations.

Index Terms— Bayesian estimation, random sets, nonlinear fil-
tering, particle filter

1. INTRODUCTION

The problem of position and velocity estimation of a moving object
using measurements of Doppler-shift frequencies at several separate
locations has a long history [1, 2, 3]. Renewed interest in this prob-
lem is driven by applications, such as passive surveillance, and the
technological improvements in wireless sensor networks [4, 5, 6].
The problem can be cast in radar or sonar context. In the radar con-
text, for example, the transmitters (or illuminators) are typically the
commercial digital audio/video broadcasters, FM radio transmitters
or GSM base stations, whose transmitting frequencies are known.
The radar receivers can typically measure the multi-static range, an-
gle and Doppler-shift. The current trend in surveillance, however,
is to use many low cost, low power sensors, connected in a network
[7]. In line with this trend, this paper investigates the possibility of
tracking a moving target using low-cost radars that measure Doppler
frequencies only.

Existing literature is mainly focused on observability of the tar-
get state from the Doppler-shift measurements [4, 5] and geometry-
based localisation algorithms [8, 3, 6]. In this paper we cast the
problem in the nonlinear filtering framework [9]. Moreover, we
model target existence by a two-state Markov chain which allows an
automatic detection of target presence or absence from the surveil-
lance volume. Finally, we allow for both false detections and miss-
detections of the target. The optimal solution for the joint detection
and tracking using multi-static Doppler-shifts is thus formulated as
a Bernoulli filter in the random set Bayesian estimation framework
[10]. This filter is implemented as a particle filter and its perfor-
mance investigated by a numerical example.
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The paper is organised as follows. Section 2 describes the prob-
lem. Section 3 presents the Bernoulli filter and explains its particle
filter implementation. Section 4 illustrates the Bernoulli-particle fil-
ter performance by a numerical example, and finally the conclusions
of the study are drawn in Section 5.

2. PROBLEM FORMULATION

The state of the moving object in two-dimensional surveillance area
at time tk is represented by the state vector

xk =
[
xk ẋk yk ẏk

]
ᵀ

. (1)

where ᵀ denotes matrix transpose. Target position is determined by
pk = [xk yk]ᵀ ∈ R

2, while its velocity by vk = [ẋk ẏk]ᵀ ∈ R
2.

Target motion is modelled by a nearly constant velocity (CV)
model:

xk+1 = Fkxk + uk (2)

where Fk is the transition matrix and uk ∼ N (u;0,Qk) is white
Gaussian process noise. We adopt:

Fk = I2 ⊗

[
1 Tk

0 1

]
, Qk = I2 ⊗ q

[
T3

k

3

T2
k

2
T2

k

2
Tk

]
, (3)

where ⊗ is the Kroneker product, Tk = tk+1 − tk is the sampling
interval and q is the level of power spectral density of the corre-
sponding continuous process noise [11, p.269]. We refer to k as to
the discrete-time index.

In order to model target appearance/disappearance we introduce
a binary random variable εk ∈ {0, 1} referred to as the target ex-
istence (the convention is that εk = 1 means that target exists at
scan k, and vice versa). Dynamics of εk is modelled by a two-state
Markov chain with transitional probability matrix (TPM) Π whose
elements are [Π]ij = P{εk+1 = j−1|εk = i−1} for i, j ∈ {1, 2}.
We adopt a TPM as follows:

Π =

[
(1 − pb) pb

(1 − ps) ps

]
(4)

where pb := P{εk+1 = 1|εk = 0} is the probability of target
“birth”and ps := P{εk+1 = 1|εk = 1} the probability of target
“survival”. These two probabilities together with the initial target
existence probability q0 = P{ε0 = 1} are assumed known.

Target Doppler-shift measurements are collected by spatially
distributed sensors (e.g. multi-static Doppler-only radars), as illus-
trated in Fig.1. A transmitter T at known position t = [x0 y0]

ᵀ ,
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illuminates the target by a sinusoidal waveform of a known car-
rier frequency fc. In Fig.1, the receivers are denoted by Ri,
i = 1, . . . , M = 4. Target originated Doppler shift frequency,

T
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R 3

PR4

x

y

V

0

k
k

Fig. 1. Multi-static Doppler-only surveillance network in 2D

measured by receiver i = 1, . . . , M placed at known location
ri = [xi yi]

ᵀ , is then:

z
(ik)
k = h

(ik)
k (xk) + w

(ik)
k (5)

where

h
(ik)
k (xk) = −v

ᵀ

k

[
pk − ri

‖ pk − ri ‖
+

pk − t

‖ pk − t ‖

]
fc

c
(6)

is the Doppler frequency shift, c is the speed of light and w
(i)
k is

measurement noise in receiver i, modelled by white Gaussian noise
with variance σ

(i)
w , and assumed independent of process noise uk.

The Doppler-shift can be positive or negative. The measure-
ment space is therefore an interval Z = [−f0, +f0], where f0 is
the maximal possible value of Doppler shift, assumed known. Tar-
get originated Doppler shifts are collected by all sensors with prob-
ability pD ≤ 1. False detections can also appear: their distribu-
tion over the measurement space Z is time invariant and denoted by
c(z); the number of false detections per scan is assumed to be Pois-
son distributed, with the constant mean value λ. The measurement
set collected by sensor ik at time tk is denoted Z

(ik)
k . The sensors

send their measurements to the fusion center at asynchronous times
(whenever available) together with the correct time stamp and the
sensor identification.

The problem is to detect when a moving object appears in the
surveillance area and then to estimate sequentially its position and
velocity vector.

3. BERNOULLI PARTICLE FILTER

3.1. Bernoulli filter

The optimal Bayes filter for the problem described above is the
Bernoulli (or JoTT) filter [10, Sec.14.7],[12]. The state of the target
is represented by a Bernoulli random finite set X whose posterior
probability density function (PDF) at time k is defined as [10]:

fk|k(X|Z1:k) =

⎧⎪⎨
⎪⎩

1 − qk|k if X = ∅

qk|k · sk|k(x) if X = {x}

0 if |X| > 1

(7)

Here Z1:k ≡ Z
(i1)
1 , . . . , Z

(ik)
k is the sequence of measurement sets

(originating from various receivers) accumulated up to the current

time k; qk|k := P{εk = 1|Z1:k} is the posterior probability of
target existence and sk|k(x) = p(xk|Z1:k) is the posterior spatial
PDF of the target.

The Bernoulli filter propagates the posterior fk|k(X|Z1:k) over
time in two steps, the prediction and update. The prediction equa-
tions of the Bernoulli filter are [10, Sec.14.7]:

qk+1|k = pb · (1 − qk|k) + ps · qk|k (8)

sk+1|k(x) =
pb · (1 − qk|k) · bk+1|k(x)

pb (1 − qk|k) + ps qk|k

+

ps qk|k

∫
ϕk+1|k(x|x′) sk|k(x′) dx′

pb (1 − qk|k) + ps qk|k

(9)

The density ϕk+1|k(x|x′) in (9) is the target transitional density,
which according to (2) is given by ϕk+1|k(x|x′) = N (x;Fx′,Q).
The density bk+1|k(x) is the spatial distribution of predicted “tar-
get birth”. In the absence of prior knowledge of the state of target
birth, this density will have to cover the entire surveillance volume
in position and velocity space. Measurements of Doppler-shift will
be used to somewhat reduce the uncertainty in the velocity of target
birth state.

Upon receiving the measurement set Zk+1
abbr
= Z

(ik+1)

k+1 from
receiver ik+1, and assuming that pD is state-independent, the
Bernoulli filter is updated as follows [10, Sec.14.7]:

qk+1|k+1 =
1 − δk+1

1 − δk+1 · qk+1|k

· qk+1|k (10)

sk+1|k+1(x) =

1 − pD + pD

∑
z∈Zk+1

gk+1(z|x)

λc(z)

1 − δk+1
sk+1|k(x)

(11)

where

δk+1 = pD

⎛
⎝1 −

∑
z∈Zk+1

∫
gk+1(z|x) sk+1|k(x) dx

λ c(z)

⎞
⎠ , (12)

and gk+1(z|x) is the measurement likelihood function for a target
originated measurement. According to (5) the likelihood for a re-

porting receiver i, is given by gk+1(z|x) = N
(
z; h

(i)
k+1(x), σ

(i)
w

2
)
.

In this paper we will consider only the state-independent pD.
The update equation of the Bernoulli filter for the state-dependent
pD (which is more realistic, since pD is a function of the signal-to-
noise ratio) are slightly more involved, see [10, Sec.14.7].

3.2. Particle filter implementation

The sequential Monte Carlo method provides a general framework
for the implementation of optimal Bayes filters, both in the context
of single and multiple targets [13], [10]. When this method is ap-
plied to the Bernoulli filter, the resulting Bernoulli particle filter (PF)
will approximate the spatial PDF sk|k(x) by a set of weighted ran-
dom samples or particles. In fact there are two types of particles,
corresponding to the persistent and newborn target, distinguished in
notation by subscripts p and b, respectively. The pseudo-code of the
Bernoulli PF for k = 1, 2, . . . , is given in Algorithm 1. The inputs
to the algorithm are: (1) the probability of existence qk|k; (2) the

set of persistent particles Pk,p ≡ {wn
k,p,xn

k,p}
Np

n=1, where xn
k,p is
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the state of persistent particle n and wn
k,p is its corresponding nor-

malised weight, i.e.
∑Np

n=1 wn
k,p = 1; the spatial PDF sk|k(x) is

approximated as

sk|k(x) ≈

Np∑
n=1

wn
k,p δxn

k,p
(x) (13)

where δa(x) is the Dirac delta function concentrated at a; (3) the

set of newborn particles Pk,b ≡ {wn
k,b,x

n
k,b}

Nk,b

n=1 whose weights
are also normalised; (4) the new set of Doppler-shift measurements
Zk+1 from sensor ik+1.

Algorithm 1 Pseudo-code of the Bernoulli PF at k = 1, 2, . . .

1: Input: qk|k , Pk,p, Pk,b Zk+1

2: Predict existence probability qk+1|k using (8)
3: Predict birth particles Pk+1|k,b: for n = 1, . . . , Nk,b do

xn
k+1|k,b ∼ ϕ(x|xn

k,b); wn
k+1|k,b = pb(1 − qk|k)/(pb(1 −

qk|k) + psqk|k).
4: Predict persistent particles Pk+1|k,p: for n = 1, . . . , Np do

xn
k+1|k,p ∼ ϕ(x|xn

k,p); wn
k+1|k,p = psqk|k/(pb(1 − qk|k) +

psqk|k).

5: Union: {wn
k+1|k,xn

k+1|k}
Nk+1

n=1 = Pk+1|k,b ∪ Pk+1|k,p

6: Compute δk+1 ≈ pD

(
1 −

∑
z∈Zk+1

∑
n

gk+1(z|xn
k+1|k) wn

k+1|k

λ c(z)

)
7: Update prob. existence qk+1|k+1 using (10)
8: Update weights wn

k+1|k+1 for n = 1, . . . , Nk+1 using (11):

wn
k+1|k+1 =

⎡
⎣1 − pD + pD

∑
z∈Zk+1

gk+1(z|x
n
k+1|k

)

λ c(z)

⎤
⎦ wn

k+1|k

1 − δk+1

9: Resample Np times from {wn
k+1|k+1,x

n
k+1|k}

Nk+1

n=1 to obtain

Pk+1,p ≡ {wn
k+1,p = 1

Np
, xn

k+1,p}
Np

n=1

10: Create newborn particles using Zk+1: Pk+1,b

11: Report qk+1|k+1 and Pk+1,p, which approximates
sk+1|k+1(x).

12: Output for the next time step: qk+1|k+1, Pk+1,p, Pk+1,b

Steps 3-5 in Algorithm 1 implement eq.(9). After resampling
(step 9) we apply MCMC move step [13, p.55] in order to increase
the particle diversity. Step 10 in Algorithm 1 creates newborn target
particles. This is carried out for each z ∈ Zk+1 by the Accept-
Reject method [14]: draw samples from a multivariate Gaussian
N (x;μ,C) and accept them if their velocity vector is compatible
with the Doppler measurement z. For each measurement we create
in this way Np/2 newborn particles, that is Nk+1,b = |Zk+1| ×
Np/2. The weights of newborn particles are uniform. More details
about the Bernoulli PF implementation can be found in [15].

4. NUMERICAL RESULTS

The Bernoulli PF for multi-static Doppler-only radar was tested
using the scenario plotted in Fig.2.a. There were five receivers
and the target was following the trajectory indicated by the solid
line in Fig.2.a. The true target initial state was set to x0 =
[−7km 20m/s − 3.5km 16m/s]ᵀ . The target was present
throughout the surveillance interval of 420 seconds.

Every T = 6 seconds one of the receivers (chosen at random)
reports its set of measurements Z

(ik)
k . The measurement noise stan-

dard deviation, the probability detection and the clutter parameters

for all five receivers were identical: σk = 0.5Hz, pD = 0.9, λ = 1
and c(z) = 1/400Hz for z ∈ [−200Hz, 200Hz] and zero otherwise.
The carrier frequency used in the testing setup was fc = 900 MHz.
Fig.2.b shows a typical set of Doppler measurements over time. The
colour coding corresponds to the colour coding of the receivers in
Fig.2.a (e.g. receiver R4 is in indicated by a red square in Fig.2.a
and its measurements are shown as red dots in Fig.2.b).
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Fig. 2. Testing scenario: (a) target trajectory and the locations of the trans-
mitter (T) and five receivers (R1,...,R5); (b) A typical set of Doppler mea-
surements over time (from all receivers)

The Bernoulli PF was implemented using birth parameters μ =
[0 0 0 0]ᵀ , C = diag[(7km)2 (20m/s)2 (7km)2 (20m/s)2], and
Np = 10000, pb = 0.01, ps = 0.99 and q0 = 0. A single run
of the Bernoulli PF is illustrated in Figs.3–5. The existence of the
target is established very quickly, after only a few scans (see the plot
of qk|k over time in Fig.3). The probability qk|k remains at the value
of 1.0 for most of the time, except when the target detection was
missing (e.g. k = 50). To estimate the target state accurately it took
almost 20 additional scans. This is because the posterior spatial PDF
sk|k(x) remains diffuse and multi-modal for a number of scans until
it eventually concentrates on the true target state (see Fig.4).

This is all reflected in the optimal sub-pattern assignment
(OSPA) error [16] (see Fig.5) which was computed here using
parameters p = 1 and c = 10km (these parameters are chosen so
that OSPA error represents the sum of the localisation error and the
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Fig. 4. Estimated (red) and true (gray) tracks; green dots are particles

cardinality error; c = 10km is the penalty assigned to the cardinality
error). Initially, in the first 5 scans, the OSPA error is dominated by
the cardinality error (during this period qk|k is below the threshold
for track detection/formation, here adopted at 0.5). This is followed
by a period of a large localisation error, which eventually (after
about 25 scans) drops to almost zero.

5. CONCLUSIONS

The paper developed a Bernoulli particle filter for joint detection and
tracking of a target using multi-static Doppler-only radar receivers.
Target existence, clutter (false detections) and miss-detections have
all been included in the model. Numerical simulations demonstrate
that the Bernoulli PF is able to quickly establish the presence of a
target. The target spatial posterior density, on the other hand, re-
mains diffuse and multi-modal for a longer period of time, until it
eventually focuses on the target. Future work will consider state-
dependent probability of detection and sensor scheduling for energy
conservation.
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