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ABSTRACT

The paper formulates the problem of sequential Bayesian estima-
tion of a compound state consisting of a multi-object dynamic state
and a multi-sensor bias. The compound state is modelled by a dou-
bly stochastic point process, where the multi-object bias is a parent,
whereas the multi-object state is the offspring point process. The
prediction and the update steps for the first-order moment of the
posterior density of the doubly-stochastic point process can be ex-
pressed analytically. The implementation, however, in general has to
be done numerically. The paper presents a particle filter implemen-
tation illustrated in the context of multi-target tracking using range-
azimuth measuring sensors with unknown biases.

Index Terms— Bayesian estimation, random sets, sensor bias,
sensor registration, multi-target tracking

1. INTRODUCTION

Calibration of sensors for cooperative networked surveillance is
a crucial prerequisite for successful network deployment. Conse-
quently numerous techniques for self-localisation and self-calibration
of sensor network have been proposed, e.g. [1, 2]. These techniques,
however, are never exact, meaning that the residual sensor biases
remain. The problem of sensor bias estimation is particularly im-
portant in target tracking, because excessive registration errors can
lead to the formation of multiple “ghost” tracks on the same target.
A review of multi-sensor multi-target bias estimation approaches is
presented in [3]. Most of the sensor registration methods rely on
assumptions such as: sensors are synchronous, detection is perfect
(no missed or false detections) and the association of multi-sensor
detections has been carried out as a pre-processing step.

In order to relax these assumptions it is necessary to formulate
the problem as a sequential Bayesian estimation problem on the joint
space of multi-target state and multi-sensor bias. Both the multi-
target state and the multi-sensor bias need to be modelled as stochas-
tic dynamic systems, where the multi-target state is characterized by
a time varying number of objects (targets). The sensor measurements
are typically affected by measurement noise in addition to sensor bi-
ases, but also suffer from imperfect detection. An early attempt to
formulate a general solution in this framework was [4]. However,
the analytic formulation of [4] applies to a single permanently ex-
isting target. In order to deal with multiple targets, the method in
[4] requires sensor level trackers whose output is ultimately fused
via track association and fusion. More recently the Bayesian unified
registration and tracking (BURT) was formulated in its most general

form using the random set framework [5]. Furthermore the BURT-
PHD filter has been proposed as a computationally tractable solution,
although it has not been implemented or tested.

In this paper we adopt the same framework as in [5]. In or-
der to formulate a tractable solution, however, we model the joint
multi-target–multi-sensor bias state by a doubly-stochastic (or clus-
ter) point process [6, Ch.6], where the bias vector is the parent
whereas the multi-target state is the offspring (daughter) point pro-
cess. Moreover, since the multi-sensor bias is of a constant size
(i.e. it is a random vector), a special case of the single-cluster
point process [7] is applicable in this case. The paper formulates
the theoretical Bayesian solution, proposes a particle filter based
implementation and demonstrates its performance by a numerical
example.

2. PROBLEM FORMULATION

Let the target state space be denoted by X ⊆ R
nx . Targets can

appear or disappear anywhere and anytime in X . Suppose that the
number of objects that exist in the state space X at time tk is denoted
by νk. The multi-object target state can conveniently be represented
by a finite random set (RFS) [8]

Xk = {xk,1, . . . ,xk,νk
} ∈ F(X ) (1)

where F(X ) is the set of finite subsets of X . A RFS Xk is a ran-
dom variable that take values as unordered finite sets, with both the
number of elements in Xk and their spatial position in X being ran-
dom. Individual target dynamics is modelled by a Markov transition
density from tk−1 to tk, denoted πk|k−1(x|x

′). The probability that
a target with state x

′ at tk−1 will survive until time tk is denoted
pS(x′)

abbr
= pS,k|k−1(x

′). Finally, target birth between tk−1 and tk

is modelled by a Poisson RFS, characterised by intensity function
γk|k−1(x).

Suppose R sensors with overlapping coverage provide measure-
ments of the targets in X by taking values in the measurement space
Z ⊆ R

nz . Sensor measurements are affected by two sources of
error: the systematic errors (or biases) and the stochastic zero-mean
additive noise. Furthermore, due to the imperfections in the detector,
objects are typically detected with the probability of detection less
than 1, whereas the spurious (false) detections are also reported. The
set of measurements provided at time tk by sensor rk ∈ {1, . . . , R}
can also be conveniently represented by a RFS:

Z
(rk)
k = {z(rk)

k,1 , . . . , z
(rk)

k,m
(rk)

k

} ∈ F(Z) (2)
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where F(Z) is the set of finite subsets of Z and in general νk �=

m
(rk)
k . For measurement z

(rk)
k ∈ Z

(rk)
k , which originates from tar-

get xk ∈ Xk, the measurement equation can be expressed as:

z
(rk)
k = h

(rk)
k (xk) + β

(rk)
k + v

(rk)
k (3)

where h
(r)
k : X → Z is the (possibly) nonlinear measurement func-

tion of sensor r; β
(rk)
k ∈ B ⊆ R

nz is the bias vector of sensor

rk at tk and v
(rk)
k is zero-mean additive white noise with probabil-

ity density function pv. The likelihood function of target-originated
measurement z can then be written as g

(r)
k (z|x, β

(r)
k ) = pv(z −

h
(r)
k (x) − β

(r)
k ). False detections at k are modelled by a Poisson

RFS, characterised by intensity function κ
(r)
k (z) = λ(r) c(r)(z). Fi-

nally we point out that sensors operate asynchronously with a non-
uniform sampling interval Tk = tk − tk−1.

The problem is sequential Bayesian estimation of the posterior
PDF of the joint multi-target state Xk and the R-sensor bias vec-

tor βk =
[(

β
(1)
k

)
ᵀ

, . . . ,
(
β

(R)
k

)
ᵀ
]ᵀ

. This posterior at time k is

denoted by pk(Xk, βk|Z1:k) where Z1:k is a shortened notation
for the sequence of measurement sets received up to time k, i.e.
Z1:k ≡ (Z

(r1)
1 , . . . ,Z

(rk)
k ).

3. BAYESIAN SOLUTION

Joint state X = (β, X) represents a single-cluster point process,
where β is the parent state vector (the multi-sensor bias) and X is
its daughter point process. Assume the posterior density of the joint
state at time tk−1, denoted pk−1|k−1(X|Z1:k−1), is known. The
sequential Bayesian estimator of X propagates the posterior density
to the next time k in two steps, prediction and update [8]:

pk|k−1(X|Z1:k−1) =

∫
πk|k−1(X|X

′) pk−1|k−1(X|Z1:k−1)δX
′

pk|k(X|Z1:k) =
gk(Zk|X) pk|k−1(X|Z1:k−1)∫
gk(Zk|X) pk|k−1(X|Z1:k−1)δX.

Here πk|k−1(X|X
′) represents the single-cluster Markov transition

density and gk(Z|X) is the single-cluster likelihood. The integrals
above are set-integrals and the closed form solution for the two equa-
tions above is in general intractable. Instead we restrict to the solu-
tion for the first order moment of the posterior density.

Suppose the first order moment of the posterior density at tk−1,
pk−1|k−1(X|Z1:k−1), is available and denoted

Dk−1|k−1(β,x) = sk−1|k−1(β) ·Dk−1|k−1(x|β) (4)

where

• sk−1|k−1(β) is the posterior density of the parent at tk−1 and

• Dk−1|k−1(x|β) is the posterior intensity function of the
daughter process conditioned on the parent at tk−1.

The first order moment of the predicted density pk|k−1(β, X|Z1:k−1)
can be expressed as [7]:

Dk|k−1(β,x) =

∫
sk−1|k−1(β

′)πk|k−1(β|β
′)D̃k|k−1(x|β

′)dβ
′

(5)
where

D̃k|k−1(x|β
′) = γk|k−1(x|β

′)+∫
pS(x′|β′)πk|k−1(x|x

′; β′)Dk−1|k−1(x
′|β′)dx′

(6)

and πk|k−1(β|β
′) is the Markov transition density for the parent

(bias). Other terms in (6) have been defined in Sec.2, with the only
difference that now they are conditioned on the sensor bias vector at
tk−1, that is β′.

Suppose that at time tk sensor rk reports its measurement set
Z

(rk)
k . The update step will then affect only the component β(rk)

of the sensor bias vector β. For this reason only the “reduced” pre-
dicted intensity function Dk|k−1(β

(rk),x) of (5) needs to be up-
dated. Keeping this in mind, but for the sake of a simplified notation,
we will use notation β instead of β(rk) in equations below.

The first order moment of the updated density pk|k(β,X|Z1:k)
can be derived under the assumption that the predicted state is a
single-cluster with a Poisson daughter. The updated intensity func-
tion is then [7]

Dk|k(β, x) = sk|k(β) ·Dk|k(x|β) (7)

where

sk|k(β) =
sk|k−1(β)LZk

(β)∫
sk|k−1(β)LZk

(β)dβ
(8)

Dk|k(x|β) = (1− pD(x|β))Dk|k−1(x|β)+∑
z∈Zk

pD(x|β)Dk|k−1(x|β)gk(z|x; β)

κk(z) +
∫

pD(x|β)Dk|k−1(x|β)gk(z|x; β)dx

(9)

and LZk
(β) is the multi-target likelihood:

LZk
(β) = exp{−

∫
pD(x|β)Dk|k−1(x|β)dx}×∏

z∈Zk

(
κk(z) +

∫
pD(x|β)gk(z|x; β)Dk|k−1(x|β)dx

)
(10)

Note that gk(z|x; β), pD(x|β) and κk(z), which feature in (9) and
(10), have been defined in Sec.2. Here, however, we explicitly ex-
press their conditioning on the bias of sensor rk.

Equations (6) and (9) represent the prediction and update equa-
tions of the standard PHD filter [9], respectively, for the daughter
process (multi-target state) conditioned on the parent (sensor bias).

4. PARTICLE FILTER

The sequential Bayesian estimator described in Sec.3 can be solved
only numerically and we adopt the particle filter implementation
[10, 11] for this purpose. The particle approximation of the pos-
terior PDF of the parent β (multi-sensor bias vector) at k− 1 can be
expressed by:

ŝk−1|k−1(β) =
M∑

i=1

wi
k−1 · δβi

k−1
(β) (11)

where βi
k−1 is a random sample (particle) from BR, wi

k−1 is
the sample weight satisfying

∑M

i=1 wi
k−1 = 1 and δy(x) de-

notes the Dirac delta function focused at y. Conditioned on
each parent particle βi

k−1, the approximation of intensity func-

tion Dk−1|k−1(x|β
i
k−1) by a particle set {(qj|i

k−1, x
j|i
k−1)}

Nk−1

j=1 as
follows:

D̂k−1|k−1(x|β
i
k−1) =

Nk−1∑
j=1

q
j|i
k−1 · δxj|i

k−1

(x) (12)
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Here ν̂i
k−1 =

∑Nk−1

j=1 q
j|i
k−1 represents the conditional estimate of

the cardinality of the multi-object state Xk−1 (i.e. an estimate of
the number of targets at tk−1). The number of particles used in
approximation of intensity function (12) varies with time because
we use a fixed number of particles per target (and the number of
targets is time-varying).

The intensity function on the joint space (β,X) at k− 1 then is
represented by an M ×Nk−1 particle set:

Pk−1 =

{(
wi

k−1, β
i
k−1,

{(
q

j|i
k−1,x

j|i
k−1

)}Nk−1

j=1

)}M

i=1

(13)

The steps of the particle filter that implements the Bayes estimator
of Sec.3 are given in Algorithm 1. The implementation is based
on multi-stage tempering [12, p.540], i.e. with the multi-target
likelihood raised to γs ∈ (0, 1) at stage s = 1, . . . , S, such that∑S

s=1 γs = 1 [13]. This facilitates the move of bias-particles βi
k,

i = 1, . . . , M , towards the relevant region of the multi-sensor bias
space BR.

Algorithm 1 The steps of the particle at time tk

1: Input: Pk−1, Z
(rk)
k

2: Copy: βi
k ← βi

k−1, for i = 1, . . . , M

3: β̄i,0
k ∼ π(β|β(rk),i

k−1 ) for i = 1, . . . , M 	 Compon. rk of βi
k−1

4: for s = 1, . . . , S do
5: for i = 1, . . . , M do
6: βi,s,∗

k ← β̄i,s−1
k

7: Estimate D̂k|k(x|βi,s,∗
k ) of (12) using Z

(rk)
k

8: Compute w̃i
k = LZk

(βi,s,∗
k )γs using (10)

9: end for
10: Normalise weights: wi

k = w̃i
k/

∑M

i=1 w̃i
k for i = 1, . . . , M

11: Find imax = maxi=1,...,M wi
k

12: Resample from {wi
k, βi,s,∗

k }Mi=1 to obtain { 1
M

, βi,s
k }

M
i=1

13: MCMC move step: β̄i,s
k ← βi,s

k for i = 1, . . . , M
14: end for
15: β

(rk),i
k ← β̄i,S

k for i = 1, . . . , M 	 Component rk of βi
k

16: Estimate multi-object state X̂k from D̂k|k(x|βimax,S,∗
k )

17: Estimate multi-sensor bias β̂k = 1
M

∑M

i=1 βi
k;

18: Report X̂k, β̂k

19: Output for the next time step: Pk

Line 3 of Algorithm 1 predicts the sensor bias particle, and since
the bias is typically slowly varying, we adopt a random walk model.
The for-loop from lines 5 to 9 computes for each bias (parent) parti-
cle the corresponding intensity function, which effectively involves
running a particle PHD filter. Line 7 is therefore a non-trivial step
with full explanation given in [14],[15]. There are two types of par-
ticles in the particle PHD filter, the persistent and newborn target
particles. The un-normalised weight of each parent particle is com-
puted in line 8, while the weights are normalised in line 10. Line 11
finds the parent particle with the highest weight. The index of this
particle will be used in line 16 to find the maximum a posteriori es-
timate of the intensity function. The parent particles are resampled
in line 12 to obtain a new set of equally weighted parent particles,
followed by Metropolis-Hastings move step [10, p.55] in line 13.
The for-loop from line 4 to 14 is repeated for a sequence of fac-
tors γs ∈ (0, 1), s = 1, . . . , S. Line 16 estimates the multi-object
state X̂k from the intensity function approximated by particles as in
(12). This step does not involve clustering of particles (as suggested
by numerous authors): a statistically and computationally efficient

method is presented in [14]. The estimate of the multi-sensor bias
vector β̂k is computed as the sample mean in line 17. At the end of
each processing cycle, the algorithm reports (line 18) the estimates
of multi-object state X̂k and multi-sensor bias β̂k.

5. NUMERICAL RESULTS

The algorithm is demonstrated using a 2D scenario shown in Fig.1.
The measurements are collected over k = 1, . . . , 12 scans using
R = 2 (static) sensors, reporting their measurements alternatively
(i.e. 6 scans of detections from each sensor). The sensors are located
at (0, 0)m (measurements shown in red) and (120, 35)m (measure-
ments in green). There are six targets, of which four appear at k = 1
and the remaining two at k = 3. All targets are moving in the plane
with a nearly constant velocity motion. The state vector of each in-
dividual target is x = [x ẋ y ẏ]ᵀ , where (x, y) denotes target
position and (ẋ, ẏ) its velocity. Both sensors measure target range
and azimuth, that is

h
(r)
k (x) =

[√
(x− xr)2 + (y − yr)2

arctan
(

x−xr

y−yr

) ]
, r = 1, 2, (14)

where (xr, yr) is the position of sensor r. The sensor bias vectors
β

(r)
k = [Δρr Δθr]

ᵀ , for r = 1, 2, initially take values Δρ1 =
7.2m, Δρ2 = −5m, Δθ1 = −3.5◦, Δθ2 = 2◦ and subsequently
drift away. Measurement noise v

(r)
k is white zero-mean Gaussian,

i.e. v
(r)
k ∼ N (v;0, Σ

(r)
k ), where Σ

(r)
k is a diagonal matrix with

square-root diagonal elements σ
(r)
ρ = 0.1m and σ

(r)
θ = 0.2◦, for

r = 1, 2. The probability of detection is p
(1)
D = p

(2)
D = 0.95;

the mean number of false detections per scan per sensor is λ(1) =
λ(2) = 10. The false detections are uniformly distributed in range,
from 10m to 300m and in azimuth from −π to π radians.

−200 −100 0 100 200 300 400

−300

−200

−100

0

100

200

300

y 
[m

]

x [m]

Sensor 1
Sensor 2

Fig. 1. Testing scenario involving two sensors and six targets

The particle filter was implemented using 75 particles for each
newborn target (each new measurement is potentially a newborn tar-
get) and 300 particles for each persistent target. The number of bias
vector particles was M = 625. Fig. 2 shows the estimates β̂k over
time on one particular run of the algorithm. The black solid lines are
the true values, the red and green lines represent the estimates. The
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particle filter approximation of the posterior density of the multi-
sensor bias, ŝk|k(β) of (11), is shown in Fig.3 at k = 6 and k = 12.
The true values for sensor 1 and 2 are indicated by asterisks. Figs. 2
and 3 confirm that the particle filter estimates the multi-sensor bias
correctly.
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Fig. 2. True and estimated multi-sensor bias vector β̂k over time
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Fig. 3. Particle approximation of the posterior density of the multi-
sensor bias, ŝk|k(β), at k = 6 (left) and k = 12 (right).

The accuracy of the multi-object state estimate X̂k was mea-
sured using the OSPA error metric [16], with parameters p = 1 and
c = 5m. By choosing p = 1, the OSPA error can be interpreted
as a sum of the cardinality estimate error and the object localisation
error. The cut-off parameter c was chosen as a measure of penalty
(expressed in meters) for cardinality error. Fig.4 shows the OSPA
error over time: initially it is dominated by cardinality error, but as
the sensor bias estimates become more accurate, both the cardinality
and localisation errors become smaller.

6. CONCLUSIONS

The paper presented a particle filter implementation of the sequential
Bayesian estimator of a doubly-stochastic point process, where the
parent process is the sensor bias vector and the offspring processes is
the multi-target state. Essentially for each bias-particle it is required
to compute a particle PHD (intensity function) whose likelihood rep-
resented by (10) is evaluated for the purpose of importance weights
update. Numerical results demonstrate reliable performance. The
proposed technique is applicable to appearing/disappearing targets,
asynchronous sensors with possibly imperfect detection and without
a need for prior multi-sensor measurement association.
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