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ABSTRACT

We present a consensus-based distributed particle filter (PF) for
wireless sensor networks. Each sensor runs a local PF to compute a
global state estimate that takes into account the measurements of all
sensors. The local PFs use the joint (all-sensors) likelihood function,
which is calculated in a distributed way by a novel generalization of
the likelihood consensus scheme. A performance improvement (or a
reduction of the required number of particles) is achieved by a novel
distributed, consensus-based method for adapting the proposal den-
sities of the local PFs. The performance of the proposed distributed
PF is demonstrated for a target tracking problem.

Index Terms— Distributed particle filter, likelihood consensus,
distributed proposal density adaptation, target tracking, wireless sen-
sor network.

1. INTRODUCTION

We consider distributed sequential state estimation in a wireless sen-
sor network. For general nonlinear/non-Gaussian scenarios, the par-
ticle filter (PF) is often the estimation method of choice [1]. In this
paper, extending our work in [2–4], we propose a distributed PF that
uses a novel distributed scheme for proposal density adaptation. As
in [2–4], each sensor runs a local PF that computes a global state
estimate incorporating the measurements of all sensors. The local
PFs use the joint (all-sensors) likelihood function (JLF), which is
computed in a decentralized way by means of the likelihood con-
sensus (LC) scheme. Here, we present a generalized form of the
LC originally proposed in [2], which is suited to a general measure-
ment model (i.e., it is not limited to additive Gaussian measurement
noises [2, 3] or likelihoods from the exponential family [4]).

Our main contribution is a novel distributed, consensus-based
scheme for adapting the proposal densities (PDs) used by the local
PFs. Adapted PDs can yield a significant performance improvement
or, alternatively, a significant reduction of the required number of
particles [5]. In our adaptation scheme, local PDs computed by the
individual sensors are fused in a distributed way by means of con-
sensus algorithms, thereby providing to each local PF a global PD
reflecting all measurements. To make our scheme computationally
feasible, we use Gaussian approximations for the local and global
PDs. Our PD adaptation scheme differs from that proposed in [6] in
that it is distributed and it uses Gaussian PD approximations.

Consensus-based distributed PFs with PD adaptation have been
recently proposed in [7, 8]. The distributed PD adaptation scheme
of [7] employs min- and max-consensus to construct a set capturing
most of the posterior probability mass. This set is used to calcu-
late a distorted state-transition density, which serves as PD. Our dis-
tributed PD adaptation scheme has a lower complexity than that of
[7]. The communication requirements of our PD adaptation scheme
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are somewhat higher, but the overall communication requirements of
our distributed PF are still much lower than those of the distributed
PF of [7], and simulation results demonstrate a better estimation per-
formance of our distributed PF. In [8], a distributed unscented PF is
presented. This method employs a PD adaptation which, however,
is not distributed: the PDs used at the various sensors are only based
on the local measurements. Again, simulation results demonstrate a
better estimation performance of our distributed PF, however at the
cost of higher communication requirements.

This paper is organized as follows. In Section 2, we introduce
the system model and review the principles of sequential Bayesian
estimation. The LC-based distributed PF and the new generalized
LC scheme are described in Section 3. In Section 4, we present
the proposed distributed PD adaptation scheme. Finally, Section 5
reports simulation results for a target tracking problem.

2. SEQUENTIAL BAYESIAN STATE ESTIMATION

We consider a random, time-varying state vector xn = (xn,1 · · ·
xn,M )�. The state evolves according to the state-transition model

xn = gn(xn−1,un) , n = 1, 2, . . . , (1)

where un is white driving noise with a known probability density
function (pdf) f(un). At time n, xn is sensed by a sensor network
with K sensors according to the measurement models

zn,k = hn,k(xn,vn,k) , k = 1, 2, . . . ,K . (2)

Here, zn,k of dimension Nn,k is the measurement at time n and at
sensor k, and vn,k is measurement noise with a known pdf f(vn,k).
We assume that (i) vn,k and vn′,k′ are independent unless (n, k)=
(n′, k′); (ii) the initial state x0 and the sequences un and vn,k are
all independent; and (iii) sensor k knows gn(·, ·) and hn,k(·, ·) for
all n, but it does not know hn,k′(·, ·) for k′ �=k.

The state-transition and measurement models (1) and (2) together
with our statistical assumptions determine the state-transition pdf
f(xn|xn−1), the local likelihood function f(zn,k|xn), and the JLF
f(zn|xn). Here, zn � (z�n,1 · · · z

�

n,K)�denotes the vector contain-
ing all sensor measurements at time n. Due to (2) and the indepen-
dence of all vn,k, the JLF is given by

f(zn|xn) =
K∏

k=1

f(zn,k|xn) . (3)

Our goal is estimation of the state xn from all sensor measure-
ments from time 1 to time n, z1:n � (z�1 · · · z

�
n )

�. To this end, we
consider the minimum mean-square error (MMSE) estimator [9]

x̂
MMSE
n � E{xn|z1:n} =

∫
xnf(xn|z1:n) dxn . (4)

The posterior pdf f(xn|z1:n) in (4) can be calculated sequentially
from the previous posterior f(xn−1|z1:n−1) and the JLF f(zn|xn)
[10]. A computationally feasible approximation to this sequential
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MMSE state estimation is provided by the PF, which represents the
posterior pdf f(xn|z1:n) by a set of weighted particles [1].

3. LC-BASED DISTRIBUTED PARTICLE FILTER

The proposed LC-based distributed PF (LC-DPF) differs from our
previous work in [2–4] by the generalized LC and the distributed
PD adaptation (presented in Sections 3.2 and 4, respectively). As
in [2–4], each sensor tracks a particle representation of the global
posterior f(xn|z1:n) using a local PF. At each time n, each local
PF obtains a state estimate x̂n,k that is based on z1:n, i.e., all sen-
sor measurements up to time n. This requires knowledge of the JLF
f(zn|xn) as a function of xn. An approximation of the JLF is pro-
vided to all sensors in a distributed way by means of the generalized
LC. No communications between distant sensors or complex rout-
ing protocols are required. Also, no particles, local state estimates,
or measurements are communicated between the sensors. The pro-
posed distributed PD adaptation scheme can yield a significant per-
formance improvement or, alternatively, a significant reduction of
the number of particles (and, thus, of the computational complexity);
this comes at the cost of an increase in inter-sensor communications.

3.1. Local PF Algorithm

At a given time n≥1, the local PF at sensor k performs the following
steps, which are identical for all k:

Step 1: A resampling [1] is applied to the J particles
{
x
(j)
n−1,k

}J
j=1

with corresponding weights
{
w

(j)
n−1,k

}J
j=1

(calculated at time n−1)

that represent the previous global posterior f(xn−1|z1:n−1) at sen-
sor k. This produces J resampled particles

{
x̄
(j)
n−1,k

}J
j=1

.
Step 2: Temporary particles

{
x
′(j)
n,k

}J
j=1

are randomly drawn

from f(xn|x̄
(j)
n−1,k) � f(xn|xn−1)

∣∣
xn−1= x̄

(j)
n−1,k

, and a Gaus-

sian approximation N (xn;μ
′

n,k,C
′

n,k) of the “predicted posterior”
f(xn|z1:n−1) is calculated according to

μ
′

n,k =
1

J

J∑
j=1

x
′(j)
n,k , C

′

n,k =
1

J

J∑
j=1

x
′(j)
n,kx

′(j)�
n,k − μ

′

n,kμ
′�

n,k .

(5)
Step 3 (jointly performed by all sensors, using communication

with neighboring sensors): An adapted Gaussian PD q(xn; zn) �

N (xn;μn,Cn) involving all sensor measurements is computed
from the μ′

n,k′ , C′

n,k′ , and zn,k′ (k′ = 1, . . . ,K) by means of the
distributed, consensus-based scheme described in Section 4.

Step 4: J particles
{
x
(j)
n,k

}J
j=1

are drawn from the PD q(xn; zn).
Step 5 (jointly performed by all sensors, using communication

with neighboring sensors): An approximation f̃(zn|xn) of the JLF
f(zn|xn) is computed in a distributed way by means of the gener-
alized LC described in Section 3.2, using the particles

{
x
(j)
n,k

}J
j=1

drawn in Step 4.
Step 6: Weights associated with the particles x(j)

n,k drawn in Step
4 are calculated according to

w
(j)
n,k = γ

f̃(zn|x
(j)
n,k) f(x

(j)
n,k|x

(j)
n−1,k)

q(x
(j)
n,k; zn)

, j = 1, . . . , J ,

where γ is chosen such that
∑J

j=1 w
(j)
n,k = 1.

Step 7: From
{(
x
(j)
n,k , w

(j)
n,k

)}J
j=1

, an approximation of the global

MMSE state estimate x̂MMSE
n in (4) is computed according to

x̂n,k =

J∑
j=1

w
(j)
n,kx

(j)
n,k .

Initialization: The recursive procedure defined by Steps 1–7 is
initialized at time n=0 by J particles x(j)

0,k randomly drawn from an
appropriate prior pdf f(x0), and by equal weights w(j)

0,k ≡ 1/J .

3.2. Generalized Likelihood Consensus

We now present the generalized LC scheme that is used in Step 5
to provide an approximate JLF to each sensor. In contrast to our
previous work [2–4], this scheme is not limited to likelihoods with
exponential form or to additive Gaussian measurement noises; it is
suitable for any type of likelihood and any measurement model (2).

To derive the generalized LC, we first take the logarithm of (3):

log f(zn|xn) =

K∑
k=1

log f(zn,k|xn) . (6)

Unfortunately, a consensus-based distributed calculation of (6) is not
possible in general because the terms of the sum depend on the un-
known state xn. We therefore use the following approximate (finite-
order) basis expansions of the local log-likelihoods:

log f(zn,k|xn) ≈
R∑

r=1

αn,k,r(zn,k)ϕn,r(xn) . (7)

Here, αn,k,r(zn,k) are expansion coefficients that contain all
sensor-local information (including the sensor measurement zn,k),
ϕn,r(xn) are fixed, sensor-independent basis functions that are as-
sumed to be known to all sensors, and R is the order of the basis
expansion. Substituting (7) into (6), we obtain

log f(zn|xn) ≈
R∑

r=1

an,r(zn)ϕn,r(xn) , (8)

with

an,r(zn) �

K∑
k=1

αn,k,r(zn,k) . (9)

The sum over all sensors in (9) can be easily computed in a dis-
tributed way by means of a consensus algorithm [11] since the terms
of the sum are real numbers (not functions of xn).

By exponentiating (8), we finally obtain the following approxi-
mation of the JLF, denoted f̃(zn|xn):

f(zn|xn) ≈ f̃(zn|xn) � exp

(
R∑

r=1

an,r(zn)ϕn,r(xn)

)
. (10)

Therefore, a sensor that knows the coefficients an,r(zn) is able to
evaluate the approximate JLF f̃(zn|xn) for all values of xn. In fact,

the vector of all coefficients, an(zn) �
(
an,1(zn) · · · an,R(zn)

)�
,

can be viewed as a sufficient statistic [9] that epitomizes the total
measurement zn within the limits of the approximation (7). The ex-
pressions (9) and (10) allow a distributed, consensus-based calcula-
tion of f̃(zn|xn) due to the following key facts. (i) The coefficients
an,r(zn) do not depend on the state xn but contain the information
of all sensors (i.e., the expansion coefficients αn,k,r(zn,k) for all k).
(ii) The state xn enters into f̃(zn|xn) only via the basis functions
ϕn,r(·), which are sensor-independent and known to each sensor.
(iii) According to (9), the an,r(zn) are sums in which each term
contains only local information of a single sensor.

At each time n, the expansion coefficients αr,n,k(zn,k) in (7) are
calculated locally at each sensor k by means of least squares fit-
ting [12] based on the J data points

{(
x
(j)
n,k , log f(zn,k|x

(j)
n,k)

)}J
j=1

.

Here, the use of the particles x
(j)
n,k drawn in Step 4 of the local PF

algorithm ensures a good approximation in those regions of the state-
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space where the approximate JLF f̃(zn|xn) is evaluated in Step 6.
(We assume that f(zn,k|x

(j)
n,k) �= 0.)

The steps of the generalized LC scheme performed at a given time
n can now be summarized as follows:

Step 1: Sensor k calculates the expansion coefficients αr,n,k(zn,k)
in (7) using least squares fitting.

Step 2: The coefficients αr,n,k(zn,k) of all sensors k are added in
a distributed way using a consensus algorithm. One instance of that
algorithm is employed for each r ∈ {1, . . . , R}; all instances are ex-
ecuted in parallel. After a sufficient number of consensus iterations,
the ar,n(zn) (see (9)) for all r are available at each sensor.

Step 3: Using the ar,n(zn), each sensor is able to evaluate the
approximate JLF f̃(zn|xn) for any value of xn according to (10).

The proposed LC-DPF (without the PD adaptation described in
Section 4) requires the transmission of IR real numbers by each
sensor at each time n, where I is the number of consensus iterations
performed by each consensus algorithm and R (cf. (7)) is the number
of consensus algorithms executed in parallel. All transmissions are
to neighboring sensors only, and their number does not depend on the
measurement dimensions Nn,k . Thus, our LC-DPF is particularly
attractive in the case of high-dimensional measurements.

4. DISTRIBUTED PROPOSAL ADAPTATION

We now present our distributed scheme for calculating the adapted
PD q(xn; zn) (Step 3 of the local PF algorithm in Section 3.1). This
scheme can be summarized as follows. First, a “pre-distorted” local
posterior is calculated at each sensor. The local posteriors are then
fused via a distributed fusion rule to obtain a global posterior, which
is used as PD by each local PF.1 This PD takes into account the
measurements of all sensors, which is appropriate in view of the
fact that the JLF is used in Step 6. Our approach is inspired by that
in [13], which however was proposed in a different context and uses
a fusion rule different from ours.

We first note that the global posterior f(xn|z1:n) can be written
(up to a normalization factor) as

f(xn|z1:n) = f(xn|z1:n−1, zn)

∝ f(zn|xn, z1:n−1) f(xn|z1:n−1)

= f(zn|xn) f(xn|z1:n−1)

=

[
K∏

k=1

f(zn,k|xn)

]
f(xn|z1:n−1) , (11)

where Bayes’ rule and (3) have been used. Let us suppose that each
sensor k calculates a (pre-distorted, nonnormalized) local pseudo-
posterior defined as

f̃(xn|z1:n−1, zn,k) � f(zn,k|xn) f
1/K(xn|z1:n−1) . (12)

The product of all local pseudoposteriors equals the global posterior
up to a factor:

K∏
k=1

f̃(xn|z1:n−1, zn,k) =

[
K∏

k=1

f(zn,k|xn)

]
f(xn|z1:n−1) (13)

∝ f(xn|z1:n) , (14)

where (11) has been used. This posterior reflects all sensor mea-
surements and could be employed as the global PD. However, for
a simple distributed computation of (13), we use Gaussian approx-
imations of the local pseudoposteriors and the global posterior,
i.e., f̃(xn|z1:n−1, zn,k) ≈ N (xn; μ̃n,k, C̃n,k) and f(xn|z1:n) ≈

1Note that the global posterior used as PD is different from the global
posterior that is obtained by the PF as described in Section 3.

q(xn; zn) = N (xn;μn,Cn). Then, using (14) and the rules for
a product of Gaussian densities [13, 14], we obtain the following
expressions of the mean and covariance of the PD q(xn; zn):

μn = Cn

K∑
k=1

C̃
−1
n,k μ̃n,k , Cn =

(
K∑

k=1

C̃
−1
n,k

)−1

. (15)

The sums over all sensors in these expressions can be easily calcu-
lated in a distributed way using consensus algorithms.

To calculate the Gaussian approximation N (xn; μ̃n,k, C̃n,k) of
the local pseudoposterior f̃(xn|z1:n−1, zn,k), we note that (12)
is the measurement update step of a Bayesian filter using the
pre-distorted predicted posterior f1/K(xn|z1:n−1) instead of the
true predicted posterior f(xn|z1:n−1). Furthermore, each sen-
sor calculated a Gaussian approximation of the predicted poste-
rior, f(xn|z1:n−1) ≈ N (xn;μ

′

n,k,C
′

n,k) (see Step 2 in Section
3.1); this entails the Gaussian approximation f1/K(xn|z1:n−1) ≈
N (xn;μ

′

n,k,KC′

n,k). Since Gaussian models are thus used for
both f̃(xn|z1:n−1, zn,k) and f1/K(xn|z1:n−1), we propose to per-
form the measurement update in (12) by means of the update step
of a Gaussian filter [10, 15–17] such as, e.g., an extended [10] or
unscented Kalman filter [15]. This is done locally at each sensor.

The operations of the proposed PD adaptation scheme performed
at time n can now be summarized as follows:

Step 1: Each sensor k computes the mean μ̃n,k and covariance
C̃n,k of the Gaussian approximation of the local pseudoposterior,
N (xn; μ̃n,k, C̃n,k) ≈ f̃(xn|z1:n−1, zn,k). This is done locally
by performing a Gaussian filter update step with input mean μ′

n,k ,
input covariance KC′

n,k , and measurement zn,k . Here, μ′

n,k and
C′

n,k were obtained locally according to (5).
Step 2: Consensus algorithms are used to calculate the sums over

all sensors in (15). This step requires communication with neigh-
boring sensors. In total, I [M + M(M +1)/2] real numbers are
communicated by each sensor at time n. Here, I denotes the num-
ber of consensus iterations and M denotes the dimension of the state
xn. After convergence of the consensus algorithms, each sensor ob-
tained the global PD q(xn; zn) = N (xn;μn,Cn).

5. SIMULATION RESULTS

We consider a target tracking application using acoustic ampli-
tude sensors. The target is represented by the vector τn =
(xn yn ẋn ẏn)

� containing the target’s 2D position and 2D velocity
in the x-y plane. The vector τn evolves with time n according to
τn = Gτn−1+Wu′

n, n = 1, 2, . . . , where the matrices G ∈ R
4×4

and W ∈ R
4×2 are chosen as in [4] and the u′

n are independent
and identically distributed according to u′

n ∼ N (0,Cu′) with
Cu′ = diag(0.0033, 0.0033). The target motion model specified
above is however assumed unknown to the simulated PFs. There-
fore, all simulated PFs use a random walk model xn = xn−1 + un,
where the state xn = (xn yn)

� represents the position of the target
and un∼N (0,Cu) with Cu=diag(0.0528, 0.0528) (cf. (1)).

The target emits a sound of constant amplitude A = 10, which
is sensed by acoustic amplitude sensors. The (scalar) measurement
zn,k of sensor k is given by (cf. (2))

zn,k =
A

‖xn− ξn,k‖2
+ vn,k ,

where ξn,k is the position of sensor k at time n and vn,k ∼ N (0, σ2
v)

with σ2
v = 0.00005. This value of σ2

v yields a peaky likelihood,
which highlights the performance gains of PD adaptation. The net-
work consists of K=25 sensors that are deployed on a jittered grid
within a rectangular region of size 40m × 40m. Each sensor com-
municates with other sensors within a range of 18m.
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For LC, unless stated otherwise, we approximate log f(zn,k|xn)
by a multivariate polynomial of degree Rp = 6; this leads to a basis
expansion (7) of order R=

(
Rp+M

Rp

)
=28. The sums in (9) and (15)

are computed by I=15 iterations of an average consensus algorithm
with Metropolis weights [18]. For PD adaptation (Step 1 in Section
4), the update step of an unscented Kalman filter [15] is used.

We compare the proposed LC-DPF with the distributed PFs pre-
sented in [7] and [8] (referred to as DPF-1 and DPF-2, respectively)
and with a centralized PF (CPF) that processes all sensor measure-
ments at a fusion center. The CPF uses an adapted PD that is com-
puted using a (centralized) unscented Kalman filter. The number
of particles at each sensor of the distributed PFs and at the fusion
center of the CPF is J = 200 unless stated otherwise. As a per-
formance measure, we use the root-mean-square error of the state
estimates x̂n,k, denoted RMSEn, which is computed as the square
root of the average of the squared estimation error over all sensors
and over 1000 simulation runs. We also compute the average RMSE
(ARMSE) by averaging RMSE2

n over all 200 simulated time instants
n and taking the square root of the result.

Fig. 1 shows the temporal evolution of RMSEn. It can be seen
that the performance of LC-DPF is almost as good as that of CPF
and better than that of DPF-1 and DPF-2. The communication re-
quirements of LC-DPF are lower than those of DPF-1 but higher
than those of DPF-2: the total counts of real numbers transmitted
by LC-DPF, DPF-1, and DPF-2 during one time step in the entire
network (all sensors) are 12375, 76875, and 1875, respectively.

Fig. 2 shows the ARMSE versus the degree Rp of the polynomials
used to approximate the local log-likelihood functions. As expected,
the ARMSE of LC-DPF decreases with growing Rp and approaches
that of CPF. Note, however, that the communication requirements
increase with growing Rp.

Finally, Fig. 3 shows the dependence of the ARMSE on the num-
ber J of particles for LC-DPF and for LC-DPF without PD adapta-
tion [4] (abbreviated as LC-DPF-NA). The ARMSE of LC-DPF is
seen to be significantly lower than that of LC-DPF-NA, even if J is
large. This demonstrates the performance improvement achieved by
our distributed PD adaptation scheme.

6. CONCLUSION

We presented a consensus-based distributed particle filter (PF) for
wireless sensor networks. The state estimates computed by the local
PFs at the various sensors reflect the past and present measurements
of all sensors. This is enabled by a generalized likelihood consen-
sus scheme, which performs a distributed approximate calculation of
the joint likelihood function for general measurement models. Our
main contribution was a distributed method for adapting the proposal
density (PD) used by the local PFs. This method is based on a Gaus-
sian model for the PD, whose mean and covariance are computed
in a distributed way by consensus algorithms and by the update step
of a Gaussian filter. Simulation results demonstrated the good per-

formance of the proposed distributed PF and the large performance
gains achieved by the proposed PD adaptation method.
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