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ABSTRACT

Chirp signals are usually encountered in target tracking problems in-
cluding radar and sonar systems. The multimodality characterizing
the distribution of the chirp signal parameters makes their estimation
very challenging. In this paper we apply marginalized population
Monte Carlo (MPMC) sampling to the problem of parameter esti-
mation of chirp signals in noise. MPMC reduces the dimension of
the vector of unknowns by marginalizing the complex amplitudes,
which are conditionally linear on the chirp rates and frequencies. A
Gibbs sampling scheme is combined with the MPMC method to fur-
ther improve the performance. Computer simulations illustrate the
validity of the proposed approach.

Index Terms— Population Monte Carlo, marginalization,
Gibbs sampling, multimodality.

1. INTRODUCTION

Many signal processing problems involve the estimation of unknown
parameters from some given observations. In some of the problems,
the multimodality of the posterior distributions of interest of the un-
knowns makes the estimation very challenging. The parameter esti-
mation of chirp signals is one such problems and has received a great
deal of attention in the past decades [1, 2, 3].

The parameter estimation of chirp signals is usually encountered
in velocity estimation and target tracking problems in radar, and
sonar systems, as well as robotics and embedded sensor systems.
Several approaches have been proposed for parameter estimation of
a single chirp signal in [1, 2, 3]. These methods have been proven
to be effective and achieve the Cramér-Rao lower bound (CRLB) at
high signal-to-noise ratios (SNRs).

An iterative maximum likelihood (ML) algorithm was proposed
in [4] for parameter estimation of multiple chirp signals. However,
this method achieves good results only at high SNRs. The method
also involves a great amount of computations due to its iterative na-
ture.

A noniterative ML approach based on the concept of importance
sampling was proposed in [5]. The method was designed to estimate
the nonlinear parameters, i.e., the chirp rates and frequencies. It was
observed that this technique provides good estimates even when the
frequency components are closely spaced. However, the approach is
still computationally very expensive since it involves grid searches
of inverse integrals and calculations of multidimensional integrals.
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All of the above methods produce point estimates. In this paper
we propose to apply the population Monte Carlo (PMC) sampling
[6, 7] in a Gibbs manner [8] and aim at obtaining an approximation
of the posterior distribution of the unknowns of interest. Thus, rather
than obtaining point estimates, we aim at estimating the joint poste-
riors of the unknowns. The posteriors, as is well known, contain all
the information about the unknowns, given their priors, the data and
the model. The proposed method marginalizes the complex ampli-
tudes, and only particles of the nonlinear parameters, i.e., the chirp
rates and frequencies are generated. The contributions of this paper
are in the extensions of a previously proposed method for estimating
posteriors of sinusoidal parameters [8]. Computer simulations illus-
trate the feasibility of the method which shows good performance.

The paper is organized as follows. In the next section we pro-
vide a general formulation of the problem. In Section 3, we briefly
review the PMC method and some recent advances. In Section 4,
we propose the Gibbs sampling-inspired PMC and the details of its
implementation. We demonstrate the use and performance of the
method on the problem of frequency and chirp rate estimation of
chirp signals in Section 5. We conclude the paper with Section 6.

2. PROBLEM FORMULATION

We observe a sequence of data yt which have the following repre-
sentation

yt =

KX
k=1

Ak exp
ˆ
i(2πfkt + παkt2)

˜
+vt, t = 1, 2, ..., dy (1)

where i =
√−1; Ak is a complex amplitude; fk denotes frequency;

αk is the chirp rate; and vt is a complex white Gaussian noise.
The observation vector is y = [y1, ..., ydy ] ∈ Cdy and the un-

known parameter vector is x = [|A1|, � A1, f1, α1, ..., |AK |, � AK ,
fK , αK ] ∈ R4K , where the symbol | · | denotes magnitude of the
argument, and � · represents phase of the parameter. The vector x
is composed of nonlinear parameters xn = [f1, α1, ..., fK , αK ] ∈
X ⊂ R2K and linear parameters xl = [|A1|, � A1, ..., |AK |, � AK ] ∈
A ⊂ R2K . The noise vector v = [v1, ...vdy ] has known probability
distribution p(v).

We assume that we know the a priori distribution π(x), and
that given the noise probability distribution, we can write the con-
ditional distribution p(y|x). Given the observation vector y, π(x),
and p(y|x), we want to compute the posterior distribution p(x|y),
which can be written as

p(x|y) ∝ p(y|x)π(x),

where ∝ symbolizes proportionality. We refer to p(x|y) as our target
distribution. We may not be interested in the complete posterior of
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x, and instead, we only want to obtain the posterior of some subset
of x, in this case the frequencies and chirp rates.

3. STATE-OF-THE-ART IN PMC

The PMC methodology was described and summarized in [7]. It
produces a set of particles at each iteration that are used for approx-
imation of the posterior distributions of the set of unknown param-
eters. The iterative structure allows for adaptivity and convergence
towards the target distribution [7].

The robustness regarding initialization of the PMC algorithm
was shown in [7] with an example of its application to Bayesian
modeling of a Gaussian mixture and ion channel models. As the
generation of particles with iterations proceeds, the quality of the
generated particles improves. This is a very important feature of
PMC. For example, it has been shown that PMC can be used for
variance reduction [9], where a mixture of generating functions can
be iteratively optimized to achieve a minimum variance of a function
of interest.

In our previous work, we have addressed the problem of esti-
mation of frequencies of multiple sinusoids in noise with marginal-
ized PMC (MPMC) [10]. There we exploited the principle of
Rao-Blackwellization to improve the efficiency of the method by
marginalizing the unwanted parameters (all the parameters except
the frequencies). In other words, we applied the PMC only on the
nonlinear parameters of the model. We have used several PMC
algorithms that operate in parallel, each of them producing particles
and weights of a subset of the parameters.

We also proposed to use Gibbs sampling in our previous work on
PMC [8]. There we generated the particles that represented particles
from the joint probability distribution of two or more unknowns in a
Gibbs manner [11]. Note that Gibbs sampling belongs to the larger
class of Markov-chain Monte Carlo (MCMC) methods and is often
used for Bayesian inference [12].

4. THE GIBBS MPMC

In MCMC methods, at iteration j, we generally construct the m-th

particle x(m)
j = [x

(m)
1,j , x

(m)
2,j , · · · , x

(m)
dx,j ]

� by drawing each com-

ponent from a proposal function qj(xk) as x
(m)
k,j ∼ qj(xk), k =

1, 2, · · · , dx [12]. We then accept/reject these proposals individu-

ally in parallel MCMC sampling, or we reject the complete x(m)
j

globally.
Gibbs sampling is a special type of MCMC sampling where each

x
(m)
k,j is sampled from a conditional distribution qj(xk|x−k). The

symbol x−k is the vector of all the parameters in x except for xk

at their current values, i.e., one uses the drawn values from the last
iteration for the conditioning parameters.

We combine the Gibbs sampling with PMC and refer to it as
Gibbs PMC [8]. Instead of drawing a particle from p(x), which is

usually infeasible, we obtain a particle x(m) from q(x) and assign it
an importance weight given by

w̃(m) =
p(x(m))

q(x(m))
.

The weights and the particles form a random measure, χ =
{x(m), w(m)}M

m=1, where w(m) denotes the normalized weight

corresponding to particle x(m) and M is the total number of parti-
cles. Here we reiterate that in PMC, we implement the generation
of particles in iterations. For example, in iteration one, we get the

random measure χ1, in iteration two, the random measure χ2 and so
on. The objective is that, as we proceed with iterations, we improve
the accuracy of the approximation. To that end, for obtaining better
generating functions, one uses the approximations from the previous
iterations. One way of exploiting the previous iteration is to employ
resampling, which is another operation that is common in particle
filtering [13]. That is, we construct new generating functions by
using particles from the previous iteration that are selected based on
their weights.

In this paper we propose an approach for constructing generat-
ing functions for the chirp problem. Instead of drawing particles of
particular scalar unknowns from their conditional distributions, we
draw the particles from a conditional distribution for a set of fre-
quency and chirp rate, where the conditioning is on the remaining
unknowns. We basically mimic the Gibbs sampling idea, where as
explained, we replicate the same steps except that our conditionals
are not obtained from the target distribution. Note that in PMC, we
assume that we cannot generate from the conditionals of the target
distribution, and therefore we work with a different joint distribution,
but one that allows for easy drawing of particles.

We now describe the specific steps of the proposed scheme. At
iteration j = 0, we initialize the particle streams by drawing them
from the prior π(x). We draw M particles, and to each of them we
assign weights according to

w̃
(m)
0 = p(y|x(m)

0 ).

The Gibbs MPMC method as applied to our problem can be
summarized as follows:

Step 1. Randomly choose the order of generation of the pa-

rameters related to different frequency components x(m)
j =

[f
(m)
1,j , α

(m)
1,j , f

(m)
2,j , α

(m)
2,j , · · · , f

(m)
K,j , α

(m)
K,j ]�. Let the order

be l1, l2, · · · , lK .

Step 2. For m = 1, 2, · · · , M , choose a particle for condi-
tioning based on the normalized weights of the particles. Let
the selected particle be with index λm. Then generate new
particles according to

f
(m)
l1,j , α

(m)
l1,j ∼

ql1,j

“
fl1 , αl1 |f (λm)

l2,j , α
(λm)
l2,j , · · · , f

(λm)
lK ,j , α

(λm)
lK ,j

”
,

for n = 2, 3, · · · , K − 1,

f
(m)
ln,j , α

(m)
ln,j ∼

qln,j

“
fln , αln |f (m)

l1,j , α
(m)
l1,j , · · · f (m)

ln−1,j , α
(m)
ln−1,j ,

f
(λm)
ln+1,j−1, α

(λm)
ln+1,j−1, · · · , f

(λm)
lK ,j−1, α

(λm)
lK ,j−1

”
,

and

f
(m)
lK ,j , α

(m)
lK ,j ∼

qlK ,j

“
flK , αlK |f (m)

1,j , α
(m)
1,j , · · · , f

(m)
K−1,j , α

(m)
K−1,j

”
.

Step 3. Compute the weights of the particles by

w̃
(m)
j =

p
“

y|x(m)
j

”
QK

n=1 qln,j(f
(m)
ln,j , α

(m)
ln,j)

.
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Step 4. Normalize the weights according to

w
(m)
j =

w̃
(m)
j

ΣM
k=1w̃

(k)
j

.

Step 5. Resample the particles according to their weights.

Step 6. If more iterations are needed, set j = j + 1, and go
back to step 1.

Step 7. At the end, obtain an approximation of the posterior
of the unknowns. Note that all available weighted particles
(from all samplers and all iterations) are used to approximate
the posterior p(x|y).

The computed weights are stored as they were obtained by the
last expression. They are normalized at the end of the algorithm with
the weights of the particles from all the iterations in order to get the
best possible approximation of the distribution of interest.

5. PARAMETER ESTIMATION OF MULTIPLE CHIRP
SIGNALS

We demonstrate the proposed method on the problem of frequency
estimation of complex chirp signals in noise [5]. The data were mod-
eled as in (1). The frequencies were normalized and 0 < f1 < f2 <
... < fK < 1. For the chirp rates we had 0 ≤ αk ≤ 2. The
measurement noise vt was white complex Gaussian of the form

vt ∼ CN (0, σ2
v)

with real and imaginary components that were independent and had

distribution N (0,
σ2

v
2

). We reiterate that the vector of unknowns was

x = [|A1|, � A1, f1, α1, ..., |AK |, � AK , fK , αK , σ2
v]

and therefore the space of unknowns had dimension 4K + 1.
We were primarily interested in the chirp rates and frequen-

cies, so we worked with the MPMC method as described in [14].
Thus, the parameter space of interest was x = [f1, α1, ..., fK , αK ].
The posterior p(x|y) could be obtained in a closed analytical form
[14], but particles could not be obtained from it. Here, we applied
a scheme where each of the conditionals was a truncated Gaussian
centered at the selected particle from the previous iteration. The con-
ditioning parameters were used for deciding the truncation points
of the Gaussian. For example, if the chirp rate αk,j needed to be
generated, we used as a generating function the truncated Gaussian

centered at α
(m)
k,j−1 with cutoff points determined by the most recent

particles representing the closest smaller and larger chirp rates from
the remaining components.1 The joint sampling of the parameters
could be easily carried out by initially setting a set of bivariate Gaus-
sians with covariances [σ2

1I, σ
2
2I, · · · , σ2

LI], where L represents the
number of Gaussians, all used for particle generation. At the first
iteration, using the particles and the weights the correlation coeffi-
cient ρ of f and α is estimated. Let this estimate be ρ̂1. Then one
constructs C1 by

C1 =

»
1 ρ̂1

ρ̂1 1

–
and forms the next set of Gaussians using [σ2

1C1, σ
2
2C1 · · · , σ2

LC1].
The method proceeds in an obvious way. In the next iteration, it

1For the lowest value of chirp rate α, the lower cutoff point is 0, and for
the highest value of chirp rate the upper cutoff point is 2; for the frequency f
when k = 1, the lower cutoff point is 0, and when k = K the upper cutoff
point is 1.

again estimates ρ, constructs C, and updates the importance func-
tions.

We tested the method by conducting simulations as follows. We
simulated dy = 50 observations of K = 2 closely spaced chirp
signals with complex amplitudes A1 = 1 and A2 = 1, frequencies
f1 = 0.3 and f2 = 0.32, chirp rates α1 = 0.001 and α2 = 0.002,
respectively. The value of the noise power was defined by using the
SNR

SNRk = 10 log10
|Ak|2

σ2
v

measured in dB.
Figure 1 shows the multimodality of the periodogram of a set of

observations at SNR = 5dB. The lower figure shows the details
of the area of interest, where we can see several local maxima as
red ellipses. We applied the Gibbs MPMC to this set of data with
M = 1000 particles per iteration.

Fig. 1. Periodogram of a set of observations (top) and contour plot of
the periodogram in part of the frequency-chirp rate plane (bottom).

All available weighted particles (from all samplers and 10 it-
erations) were used to approximate the marginalized posteriors
p(f1, f2|y) and p(α1, α2|y), shown in Figure 2. The figure confirms
that the marginalized posteriors of the frequencies and chirp rates
have most of the probability masses around the true values.

The performance of the method was quantified in terms of the
mean square error (MSE) given by

MSExd =
1

R

RX
r=1

(bxd(r) − xd)2, (2)

where R represents the number of realizations, bxd(r) denotes the
estimate of the d-th unknown obtained in the r-th run, and xd is its

3863



0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

frequency

tr e parameters
approximated histogram

Fig. 2. The approximated posteriors p(f1, f2|y) (top) and
p(α1, α2|y) (bottom).

true value. Figure 3 shows the MSE of the method as a function of
SNR with J = 10 iterations and M = 1000 particles per iteration.
At each run, the estimates were obtained from all available particles.
Each point in the figure was averaged over R = 100 runs. In the
figure, the performance of the proposed scheme achieves the CRLB
at SNR> 2dB, which is as good as the results in [5]. However, the
method in [5] requires a large number of integral calculations and
grid searches of inverse integrals in each run to achieve the CRLB.
More importantly, the method in [5] does not provide estimates of
the posterior as does the proposed method.
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Fig. 3. MSE and CRB as functions of SNR.

6. CONCLUSION

The most critical issue for estimation of the posterior distribution
of chirp signals is the multimodality. In this paper, we propose the

Gibbs MPMC algorithm to estimate the parameters of multiple chirp
signals. The marginalization of linear parameters lowers the compu-
tational cost by only generating particles of the nonlinear parameters,
namely the frequencies and the chirp rates. We also propose that the
generating functions of the particles be alternating conditionals, as in
the case of Gibbs sampling. Thus, the overall proposal function is a
product of conditionals, where the sampling from each conditional is
easy. The method is tested with simulations and the obtained results
show good performance.
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