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ABSTRACT

In this paper we consider the problem of target tracking in a network
of mobile agents that receive asynchronous measurements. The
agents measure received signal strengths from the target and broad-
cast the information to the remaining agents engaged in the tracking.
We propose several non-centralized schemes based on particle fil-
tering that account for the lack of synchronization. We demonstrate
the proposed methods by computer simulations and compare their
performance to the synchronous scenario. The obtained results
reveal that the proposed strategies efficiently compensate for the
asynchronism of the measurements.

Index Terms— Particle filtering, target tracking, mobile agents,
asynchronous measurements.

1. INTRODUCTION

New advances in technology have made the concept of target track-
ing using mobile sensor networks a reality [1]. Development of a
comprehensive framework for such an environment is not a trivial
problem, and recently it has commanded significant focus within
the research community. Numerous issues related to sensor motion
control, communication, measurement synchronization, and local-
ization need to be resolved before a feasible implementation can be
provided.

Most of existing work on mobile sensor networks [2, 3] has fo-
cused on solutions for scenarios where the agents communicate their
measurements to a central unit. This unit is in charge of processing
the data and issuing appropriate motion control commands. Track-
ing is carried out by particle filtering [4] or cost-reference particle
filtering [5]. In our previous work [6], we proposed a decentralized
solution and addressed the problem of maintaining proper tracking
in presence of stationary interfering sources.

In this paper we address the problem of tracking in a network
of mobile agents that receive asynchronous measurements. Several
different algorithms are proposed which attempt to restore the per-
formance degradation caused by the loss of synchronism. Related
work has been reported in [7], which introduces a reformulation of
the original target estimation problem in a more suitable form of the
asynchronous measurements. There, the agents are static and the
measurements are binary signals. Here we utilize a more complex
measurement model based on received signal strength, consider de-
centralize tracking based on particle filtering and maintain mobility
of the agents.
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2. PROBLEM FORMULATION

A certain area is under surveillance by mobile agents. When they
are idle, they are static and on alert to detect a target that enters the
area and track it. The agents are equipped with sensors that acquire
signals from the target, which are used for tracking. Once the targets
leave the area of surveillance, the agents stop tracking the target and
possibly hand it off to a group of agents that are tasked to monitor
a neighboring area. We consider the situation where agents receive
signals from the target in an asynchronous way. For ease of model-
ing, we introduce the concept of an agent’s base time defined as the
instant at which it receives a signal from the target. For a given ab-
solute interval of time from t−1 to t, all agents receive signals from
the target at their own base time and broadcast their measurements to
one another. Additionally, we impose the constraint that agents esti-
mate (at a minimum) the target’s location at their own base time. We
introduce a new notation that defines each agent’s base time; within
the interval t − 1 to t, where t = T, 2T, · · · , the i-th agent receives
the signal at time instant (t − 1) + τi. For simplicity, we order the
sensor “measurement instances” according to τi−1 < τi. Variables
which take on a value at this time instant will have a subscript (t, i),
referring to the corresponding base time for the i-th agent.

The target dynamics and the nature of the state noise will be first
described in terms of absolute time. Then, we will relate this model
to the new notation just described. In particular, we assume that a
target moves in a 2-D plane according to the Markovian model

xt2 = A(t2, t1)xt1 + ut2,t1 , (1)

where xt2 is a state vector defined by xt2 = [x1,t2 x2,t2 ẋ1,t2 ẋ2,t2 ]
�,

with x1,t2 and x2,t2 being the coordinates of the target in the two-
dimensional Cartesian system and ẋ1,t2 and ẋ2,t2 , the components
of the target’s velocity, all at absolute time t2. The symbol A(t2, t1)
denotes a known 4 × 4 matrix, defined by

A(t2, t1) =

»
I2 (t2 − t1)I2

02 I2

–
,

where t2 − t1 > 0 is an absolute time offset, and I2 and 02 are
the identity and zero 2 × 2 matrices, respectively. The state noise is
represented by the 4 × 1 vector ut2,t1 whose distribution is known
and assumed Gaussian with covariance matrix

Q(t2, t1) = σ2
u
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where σ2
u is the equivalent continuous time process noise intensity.

3857978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



The target dynamics related to the agents’ base time instants are

xt,1 = A(t + τ1, t − 1 + τN )xt−1,N + ut+τ1,t−1+τN

xt,i = A(t + τi, t + τi−1)xt,i−1 + ut+τi,t+τi−1 ,

i = 2, · · · , N, (2)

where N is the number of agents that track the target.

Within each time interval, the agents receive signals from the
target as well as from other agents. The signal received by the i-th
agent within the time interval from t − 1 to t can be modeled by

yt,i = gi(xt,i) + vt,i, (3)

where gi(·) is the measurement function given by

gi(xt,i) =
Ψdα

0

‖rt,i − lt,i‖α ,

with lt,i = [x1,t,i x2,t,i]
� being the location of the target at time

instant (t−1)+τi; rt,i denoting the location of the i-th agent at time
instant (t − 1) + τi; Ψ representing the emitted signal power by the
target measured at distance d0; and α being a path-loss coefficient
that depends on the transmission medium and assumed known. The
observation noise vt,i has known distribution and it does not have to
be Gaussian. For simulation purposes, we assume that the noise is
Gaussian with variance σ2

v .
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Fig. 1. (a) “True” synchronous method; (b) “false” synchronous
method; (c) asynchronous sequential method; and (d) asynchronous
batch method.

3. TRACKING ALGORITHMS

Each mobile agent performs tracking independently by employing
particle filtering and by using its own measurements and the ones
received from the other agents.1 Therefore, unlike other distributed
processing schemes where the agents exchange their estimates and
the uncertainties about them, here the agents directly share their
measurements. For comparison purposes we consider four different
scenarios, which are illustrated in Fig. 1 for four mobile agents.

1Note that all the algorithms are applicable to scenarios with static agents.

(a) This scenario corresponds to a synchronous setup where all the
agents receive the measurements at the same time. Therefore, at
the tracking times of interest (1, 2, · · · ) the agents have four mea-
surements obtained at these times for tracking four unknowns (the
position and velocity of the target). This scenario constitutes a
benchmark for the performance of the remaining algorithms. The
details of the method that tracks the target can be found in [6]. We
refer to this method as “true” synchronous method.

(b) For this case, the agents receive the measurements at different
time instants during a time interval. However, when processing
the measurements for tracking, the agents assume that the obser-
vations were obtained synchronously, i.e., at the tracking times of
interest (1, 2, · · · ), there are four measurements obtained at differ-
ent time instants but assumed to be obtained at the correct time for
tracking four unknowns (the position and velocity of the target).
We refer to this method as “false” synchronous method.

(c) Within this setup, the agents receive the measurements asyn-
chronously during a time interval. As soon as they receive their
measurement, they broadcast it and immediately update the posi-
tion of the target. The agent also updates the filter upon receiving
a measurement from another agent. In Fig. 1, within a time
interval, there is a sequence of four measurements and for each
of them the agents update the four unknowns. We refer to this
method as asynchronous sequential method.

(d) In this situation, the agents also receive the measurements asyn-
chronously during a time interval. However, they wait until they
receive their own measurement to update the target parameters.
In addition to their actual measurement, they also use the most
recent observations from the remaining agents. Therefore, they
account for the asynchronous nature of the measurements and use
this knowledge to update their individual filters. We refer to this
method as asynchronous batch method.

3.1. “False” synchronous method

This tracking setup ignores time differences between each of the
agent’s measurements, i.e., all measurements are wrongly assumed
to be obtained at the same time instant. Although each of the agents
form an estimate of the target location for their own base time (t −
1)+τi, it is assumed (incorrectly) that (t−1)+τi = k, k = 1, 2, · · · .
In running the particle filter [8], each agent forms a random measure

χk = {x(m)
k , w

(m)
k }M

m=1, where x
(m)
k are the particles and w

(m)
k

denote the weights associated to the particles. The particles for the
i-th agent are propagated as

x
(m)
k ∼ p(xk|x(m)

k−1), m = 1, 2, · · · , M, (4)

and the particle weights are computed according to

w
(m)
k ∝ w

(m)
k−1

NY
n=1

p
“
yt,n|x(m)

k

”
. (5)

Note that M represents the number of particles that each agent uses
for running its filter and for simplicity in notation it is assumed to
be the same for each agent. Also note that if we assume that all
agents initialize the filters in the same way and use the same seed for
simulation, they all maintain the same random measure.

3.2. Asynchronous sequential method

In this case, each agent processes and updates its estimate of the
target’s location at its own base time as well as at all instances in
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which other agents’ measurements are received. This solution there-
fore consists of filter updates using a single measurement at a time.
The i-th agent maintains a random measure of the form χt,i =

{x(m)
t,i , w

(m)
t,i }M

m=1 where t = 1, 2, · · · and i = 1, · · · , N . The
particles in each filter are propagated according to

x
(m)
t,1 ∼ p(x

(m)
t,1 |x(m)

t−1,N )

x
(m)
t,i ∼ p(x

(m)
t,i |x(m)

t,i−1), i = 2, · · · , N, (6)

and the particle weights of each agent at each base time instant (t −
1) + τi follow the expression

w
(m)
t,1 ∼ w

(m)
t−1,Np

“
yt,1|x(m)

t,1

”

w
(m)
t,i ∼ w

(m)
t,i−1p

“
yt,i|x(m)

t,i

”
, i = 2, · · · , N. (7)

3.3. Asynchronous batch method

For this solution, each agent uses it own measurement as well as the
most recently available measurements from other agents to form an
estimate of the target’s location only at its own base time. Since the
i-th agent no longer directly tracks the target location at other base
time instants (t − 1) + τn, n �= i, it forms an estimate of the target
location at these other instants based on the particle at its own base
time instant (t − 1) + τi

x̂
(m)
t,n = E

h
xt,n|x(m)

t,i

i
. (8)

The particles for the i-th agent are propagated as

x
(m)
t,i ∼ p(xt,i|x(m)

t−1,i), m = 1, 2, · · · , M, (9)

and the corresponding particle weights are updated at its own base
time only according to

w
(m)
t,i ∝ w

(m)
t−1,ip

“
yt,i|x(m)

t,i

” NY
n=1,n�=i

p
“
yt,n|x̂(m)

t,n

”
. (10)

This solution is labeled as batch-1 in the simulation section.
We also propose an alternative to the previous solution which

introduces the concept of an “asynchronous particle filter” and is
based on [6]. The conventional representation of the filtering density
of the target state (estimated for sensor i at its base time (t − 1) +
τi can be expressed as p (xt,i|y1:t,1:N ) where in this form each of
the yt,i represents a single measurement at time (t − 1) + τi by
sensor i. This form is modified to read p (xt,i|y1:t). Single scalar
measurements have now been replaced with measurement vectors.
A given vector yt represents the collection of measurements that
were made in the time interval from t − 1 to t and is expressed as
yt = [yt,1, yt,2, · · · , yt,N ].

Whereas in the sequential processing solution the estimate of
the state (and corresponding particles weights) is updated at the time
of each new measurement, this solution attempts to estimate the
state only at a given sensor’s own base time instants. With this in
mind, the likelihood function which is used in updating the particle
weights, can no longer be expressed as p (yt|xt,i) since the mea-
surements within the vector yt do not depend only on the state at
time (t − 1) + τi but also on “intermediate” states within the time
interval from t− 1 to t. As such, the likelihood function is modified
to p (yt|xt−1,i, xt,i). The new expression for updating the weights
of each particle of the i-th agent is

w
(m)
t,i ∝ w

(m)
t−1,ip

“
yt|x(m)

t−1,i, x
(m)
t,i

”
. (11)

It has been shown that the modified or “asynchronous” likeli-
hood can be approximated as

p (yt|xt−1,i, xt,i) ≈
NY

n=1

p (yt,n|xt−1,i, xt,i) , (12)

and each term can be decomposed according to

p (yt,n|xt−1,i, xt,i) =

Z
p (yt,n|xt,n) p (xt,n|xt−1,i, xt,i) dxt,n.

(13)

In either case, it is difficult to evaluate the “asynchronous” like-
lihood without using further approximations. With the given model
for the target state dynamics, the term p (xt,n|xt−1,i, xt,i) is a
known Gaussian and will be sharply peaked as long as the target
state process noise intensity σ2

u is reasonably small. As such, we can
form a fairly accurate approximation of this integral using Monte
Carlo integration with relatively few sample points. In summary, the
algorithm proceeds as follows:
Step 1: For the i-th agent, initialize all weights at time (t − 1) + τi

w
(m)
t,i ∝ p

“
yt,i|x(m)

t,i

”
.

Step 2: Propagate the particles x
(m)
t,i ∼ p(xt,i|x(m)

t−1,i).
Step 2a: Repeat Step 2 for all other agents j �= i, generate K sam-
ples

x̂
(k,m)
t,j ∼ p(xt,j |x(m)

t,i ), k = 1, 2, · · · , K.

Step 2b: Evaluate the integrand in (13) at each sample

ŵ
(k,m)
t,j,i = p

“
yt,j |x̂(k,m)

t,j

”
p

“
x̂

(k,m)
t,j |x(m)

t−1,i, x
(m)
t,i

”
.

Step 2c: Update the main particle weights as w
(m)
t,i ∝ w

(m)
t,i

PK
n=1 ŵ

(k,m)
t,j,i .

Step 3: Resample if necessary.
This solution is labeled as batch-2 in the simulations section.
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Fig. 2. Normalized run-time as a function of the number of particles.

4. SIMULATION RESULTS

Nine mobile agents are initially distributed across a 3 x 3 grid. The
target approaches the sensor grid from a number of possible loca-
tions with a fixed initial velocity and subject to random perturba-
tions. Once the target is within detection range, four of the agents
are assigned to track the target. Each of the agents obtains measure-
ments of the target at different time offsets from one another within
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a given sample period. We consider a scenario without interference
sources and sudden maneuvers. We also assume that the agents can
infer the location of the other agents exactly. We set the process
noise intensity σ2

u to 0.005 and measurement noise variance σ2
v to

.005 for all experiments. Other values of σ2
v were tested and it was

found that as σ2
v increases, the asynchronism of the measurements

becomes less relevant for the performance since the error due to the
noise becomes larger than the error due to incorrectly assuming that
the measurements occurred at the same instant. The deployment of
the agents is on a ball centered at the predicted location of the target
and a radius of 3m.

Figure 2 shows the average simulation run-time (per time inter-
val) for the three asynchronous solutions for different total number
of particles used to run the algorithms. The normalized run time
was defined as the ratio between the run-time per time interval of the
considered algorithm over the run-time per time interval obtained
by the “true” synchronous method as a reference.2 For the batch-
2 method 10 particles were used for the integration step. It is clear
from the figure that the batch-1 method is the best in terms of compu-
tational load, and does not require much additional processing time
compared to the “true” synchronous method. Also the sequential
method is faster than the batch-2 algorithm only for a low number of
particles. This is expected as the processing time for the sequential
method is more dependent on the particle count, while the batch-2
method requires approximately the same amount of “overhead” re-
gardless of the number of particles.
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Fig. 3. RMSE performance for different sets of measurement times.

For the next experiment we considered three different scenarios
corresponding to three different sets of measurement times, i.e., sce-
nario 1 corresponds to a set of time delays given by τ = {τi}4

i=1 =
{0, 0.25, 0.5, 0.75}; scenario 2 by τ = {0, 0.1, 0.5, 0.51}; and
scenario 3 by τ = {0, 0.05, 0.15, 0.75}. Figure 3 illustrates the
comparison in performance for each of the sets for the “true” syn-
chronous method and the “false” synchronous method. It can be
seen that scenario 1, corresponding to evenly spaced measurements
throughout the interval, yields the worst performance for the “false”
synchronous method (note that the “true” synchronous algorithm
does not get affected by the different scenarios because the mea-
surements are always at integral times). Although the performance
is also degraded with the remaining two sets of measurement times,
there is no significant difference between them.

Finally, we also simulated the various asynchronous solutions
for the previous scenario 1 of measurement times. The results in
Fig. 4 show how the proposed solutions correctly account for the

2Note that a value of 100% denotes equal time of execution of the algo-
rithm with respect to the “true” synchronous method.

asynchronous nature of the measurements and perform similar to the
“true” synchronous algorithm.
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Fig. 4. RMSE performance for all the algorithms for scenario 1 given
by τ = {0, 0.25, 0.5, 0.75}.

5. CONCLUSIONS

In this paper we propose a number of non-centralized solutions to
deal with asynchronous measurements for target tracking with mo-
bile agents. The results obtained with the proposed methods which
account for the asynchronism of the measurement reveal significant
improvement compared to a method that assumes synchronism. In
addition, we introduce an algorithm that accounts for the asynchro-
nism and yet does not require a significant increase in computational
load relative to the “true” synchronous tracking solution.
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