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ABSTRACT
The particle Gibbs (PG) sampler was introduced in [1] as a way to
incorporate a particle filter (PF) in a Markov chain Monte Carlo
(MCMC) sampler. The resulting method was shown to be an effi-
cient tool for joint Bayesian parameter and state inference in non-
linear, non-Gaussian state-space models. However, the mixing of
the PG kernel can be very poor when there is severe degeneracy in
the PF. Hence, the success of the PG sampler heavily relies on the,
often unrealistic, assumption that we can implement a PF without
suffering from any considerate degeneracy. However, as pointed out
by Whiteley [2] in the discussion following [1], the mixing can be
improved by adding a backward simulation step to the PG sampler.
Here, we investigate this further, derive an explicit PG sampler with
backward simulation (denoted PG-BSi) and show that this indeed is
a valid MCMC method. Furthermore, we show in a numerical ex-
ample that backward simulation can lead to a considerable increase
in performance over the standard PG sampler.

Index Terms— Particle Markov chain Monte Carlo, particle fil-
ter, particle Gibbs, backward simulation, Gibbs sampling.

1. INTRODUCTION

Consider a general, discrete-time state-space model with state-space
X, parameterised by θ ∈ Θ,

xt+1 ∼ fθ(xt+1 | xt), yt ∼ gθ(yt | xt).
We take a Bayesian viewpoint and model θ as a random variable
with prior density p(θ). Given observations y1:T � {y1, . . . , yT },
we wish to identify the parameter θ as well as the system states x1:T .
That is, we seek the posterior density p(θ, x1:T | y1:T ).

The Gibbs sampler (see e.g. [3]) is an MCMC method which
can be used to sample from some joint target density, when sampling
from its conditionals is tractable. In an idealised Gibbs sampler, we
would target the density p(θ, x1:T | y1:T ) by the following two-step
sweep; i) Draw θ� | x1:T ∼ p(θ | x1:T , y1:T ); ii) Draw x�1:T | θ� ∼
pθ�(x1:T | y1:T ). The first part of this sampling scheme is often
straightforward (if we can use conjugate priors for the parameters)
and is thus assumed to be tractable. However, the second part is
often very difficult. The idea behind the PG sampler of [1] is to
replace this step with a sample trajectory generated by a PF. In this
work, we will see that it can be beneficial to complement the PF
with a backward simulator when generating this sample trajectory.
The reason is that it will result in a faster mixing Gibbs kernel. This
idea was mentioned in the discussion by Whiteley [2] and also used
in a special case of PG in [4]. In [5], backward simulation is used in
the context of particle independent Metropolis-Hastings.

This work was supported by the project Calibrating Nonlinear Dynam-
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CADICS, both funded by the Swedish Research Council.

2. PARTICLE FILTER AND BACKWARD SIMULATOR

Before we go in to the details of the particle Gibbs with backward
simulation (PG-BSi) method in Section 3, we review the PF and the
backward simulator. Throughout this section we assume that the
parameter θ is fixed and discuss how to approximately sample from
the joint smoothing density pθ(x1:T | y1:T ).

2.1. Auxiliary particle filter

The auxiliary particle filter (APF) [6] can be used to approximate
(and approximately sample from) the joint smoothing distribution.
We assume that the reader is familiar with the APF and keep the
presentation quite brief, mainly just to introduce the required nota-
tion. For readers not familiar with the PF or the APF, we refer to
[7, 6]. Let {xm1:t−1, w

m
t−1}Nm=1 be a weighted particle system tar-

geting pθ(x1:t−1 | y1:t−1). That is, the particle system defines an
empirical distribution,

p̂Nθ (dx1:t−1 | y1:t−1) �
N∑

m=1

wm
t−1∑

l w
l
t−1

δxm
1:t−1

(dx1:t−1),

which approximates the target distribution. In the APF, we propagate
this sample to time t by sampling from a proposal kernel,

Mθ
t (it, xt) �

wit
t−1ν

it
t−1∑

l w
l
t−1ν

l
t−1

Rθ
t (xt | xitt−1).

Here, the variable it is the index to an “ancestor particle” xitt−1 and

Rθ
t is a proposal kernel which proposes a new particle at time t

given this ancestor. The factors νitt−1 = νθt−1(x
it
t−1, yt), known as

adjustment multiplier weights, are used in the APF to increase the
probability of sampling ancestors that better can describe the current
observation. If these adjustment multiplier weights are identically
equal to 1, we recover the standard PF.

Once we have generated N new particles (and ancestor indices)
from the kernel Mθ

t , the particles are assigned importance weights

according to wm
t = W θ

t (x
m
t , x

imt
t−1) for m = 1, . . . , N , where the

weight function is given by,

W θ
t (xt, xt−1) �

gθ(yt | xt)fθ(xt | xt−1)

νθt−1(xt−1, yt)Rθ
t (xt | xt−1)

.

This results in a new weighted particle system {xm1:t, wm
t }Nm=1, tar-

geting the joint smoothing density at time t.
The method is initialised by sampling from a proposal density

xm1 ∼ Rθ
1(x1) and assigning weights wm

1 = W θ
1 (x

m
1 ) where the

weight function is given by W θ
1 (x1) � gθ(y1 | x1)pθ(x1)/Rθ

1(x1).
After a complete run of the APF we can sample a trajectory from

the empirical joint smoothing distribution by choosing particle xm1:T

3845978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



Algorithm 1 Backward simulator

1. Initialise: Set jT = m with probability wm
T /

∑
l w

l
T .

2. For t = T − 1 : −1 : 1 do:
(a) Given x

jt+1
t+1 , compute the smoothing weights,

wm
t|T =

wm
t fθ(x

jt+1
t+1 | xmt )∑

l w
l
tfθ(x

jt+1
t+1 | xlt)

, m = 1, . . . , N.

(b) Set jt = m with probability wm
t|T .

with probability proportional to wm
T . Note that this particle trajec-

tory consists of the ancestral lineage of xmT . Hence, if this lineage is
defined by the indices b1:T (with bT = m) we obtain a sample

x�1:T = xm1:T = {xb1t , . . . , xbTT }. (1)

2.2. Backward simulation

In the original PG sampler by [1], sample trajectories are generated
as in (1). However, due to the degeneracy of the APF, the resulting
Gibbs sampler can suffer from poor mixing. We will illustrate this
in Section 4. In this work, we use an alternative way to generate
an approximate sample from the joint smoothing density, known as
backward simulation. It was introduced as a particle smoother in [8].
In [2], it was suggested as a possible way to increase the mixing rate
of a PG kernel, an idea which we elaborate on in this work.

Consider a factorisation of the joint smoothing density as
pθ(x1:T | y1:T ) = pθ(xT | y1:T )∏T−1

t=1 pθ(xt | xt+1, y1:t).
Here, the backward kernel density can be written as,

pθ(xt | xt+1, y1:t) =
fθ(xt+1 | xt)pθ(xt | y1:t)

pθ(xt+1 | y1:t) .

We note that the backward kernel depends on the filtering density
pθ(xt | y1:t). The key enabler of the backward simulator is that this
density can be readily approximated by an (A)PF, without suffer-
ing from degeneracy. By using the APF to approximate the filtering
density, we obtain an approximation of the backward kernel,

p̂Nθ (dxt | xt+1, y1:t) �
N∑

m=1

wm
t fθ(xt+1 | xmt )∑
l w

l
tfθ(xt+1 | xlt)

δxm
t
(dxt).

Based on this approximation, we may sample a particle trajectory
backward in time, approximately distributed according to the joint
smoothing density. The procedure is given in Algorithm 1. The
algorithm generates a set of indices j1:T defining a backward trajec-
tory according to

x�1:T = {xj1t , . . . , xjTT }. (2)

Note that, since we only need to generate a single backward trajec-
tory, the computational cost of the backward simulator is O(N), i.e.
of the same order as the APF. Hence, the computational complex-
ity of the PG sampler is more or less unaffected by the introduction
of the backward simulation step. Still, it is possible to reduce the
complexity of the backward simulator even further by making use of
rejection sampling [9].

3. PARTICLE GIBBS W. BACKWARD SIMULATION

Recall the idealised Gibbs sampler, briefly outlined in Section 1. The
two steps of the method which are performed at each iteration are,

θ� | x1:T ∼ p(θ | x1:T , y1:T ), (3a)

x�1:T | θ� ∼ pθ�(x1:T | y1:T ). (3b)

As previously mentioned, the idea behind the PG sampler by [1] is,
instead of sampling according to (3b), to run an APF to generate a
sample trajectory x�1:T as in (1). In the PG-BSi sampler proposed in
this work, we instead generate a sample trajectory by backward sim-
ulation, as in (2). However, to simply replace step (3b) of the ide-
alised Gibbs sampler with such an approximate sampling procedure
will not result in a valid approach. In [1] this is solved by replacing
the PF with a so called conditional SMC sampler and it is shown that
the resulting PG sampler is a valid MCMC method. In this section,
we make a similar derivation for the PG-BSi sampler.

The key in deriving the PG-BSi sampler is to consider a Markov
chain in which the state consists of all the random variables gener-
ated by the particle filter and the backward simulator, i.e. the com-
plete set of particles, particle indices and backward trajectory in-
dices. For this cause, let us start by determining the density of all the
random variables generated by the APF. Let xt = {x1t , . . . , xNt }
and it = {i1t , . . . , iNt } be the particles and ancestor indices, respec-
tively, generated by the APF at time t. Note that imt is the index
of the ancestor of particle xmt . For a fixed θ the APF then samples
from,

ψθ(x1:T , i2:T ) =
N∏
l=1

Rθ
1(x

l
1)

T∏
t=2

N∏
m=1

Mθ
t (i

m
t , x

m
t ).

Note that the APF is simply a method which generates a single sam-
ple from ψ, on the extended space XNT × {1, . . . , N}N(T−1).

By completing this with a backward simulation according
to Algorithm 1, we generate the indices j1:T defining a back-
ward trajectory. Let the joint density of {x1:T , i2:T , j1:T } be

ψ′,θ(x1:T , i2:T , j1:T ). Then, the trajectory xj1:T1:T � {xj11 , . . . , xjTT }
will be distributed (jointly with the random indices j1:T ) according
to a marginal of this density, ψ′,θ(xj1:T1:T , j1:T ), which in general
is not equal to the joint smoothing density. In other words, the
trajectory xj1:T1:T is not distributed according to pθ(x1:T | y1:T ) and
to simply use this state trajectory in step (3b) of the idealised Gibbs
sampler would not be a valid approach.

The key to circumventing this problem is to introduce a new,
artificial target density, which should, i) admit the joint smoothing
density as one of its marginals; ii) be “similar” to ψθ , to enable the
application of an APF in the sampling procedure. Here, we define
this density according to,

φ(θ,x1:T , i2:T , j1:T ) �
p(θ, xj1:T1:T | y1:T )

NT

× ψθ(x1:T , i2:T )

Rθ
1(x

j1
1 )

∏T
t=2M

θ
t (i

jt
t , x

jt
t )

T∏
t=2

w
i
jt
t
t−1fθ(x

jt
t | xi

jt
t
t−1)∑

l w
l
t−1fθ(x

jt
t | xlt−1)

.

This artificial target density differs from the one used in [1] in the
last factor. One of the important properties of the density φ is for-
malised in the following proposition (all propositions are given with-
out proofs, due to the lack of space).

Proposition 1. The marginal density of {θ, xj1:T1:T , j1:T } under φ is

given by φ(θ, xj1:T1:T , j1:T ) = p(θ, xj1:T1:T | y1:T )/NT . Thus, with

3846



Algorithm 2 CAPF – conditional APF (conditioned on
{x′1:T , j1:T })

1. Initialise:
(a) Sample xm1 ∼ Rθ

1(x1) for m �= j1 and set xj11 = x′1.

(b) Set wm
1 =W θ

1 (x
m
1 ) for m = 1, . . . , N .

2. For t = 2, . . . , T do:
(a) Draw {imt , xmt } ∼Mθ

t (it, xt) for m �= jt and set xjtt = x′t.

(b) Draw ijtt according to,

P(ijtt = m) =
wm

t−1fθ(x
jt
t | xmt−1)∑

l w
l
t−1fθ(x

jt
t | xlt−1)

.

(c) Set wm
t =W θ

t (x
m
t , x

imt
t−1) for m = 1, . . . , N .

{θ,x1:T , i2:T , j1:T } being a sample distributed according to φ, the

density of {θ, xj1:T1:T } is given by p(θ, xj1:T1:T | y1:T ). �
This proposition has the following important implication; if

we can construct an MCMC method (e.g. a Gibbs sampler) with
stationary distribution φ, then the subchain given by the variables
{θ, xj1:T1:T } will have stationary distribution p(θ, x1:T | y1:T ). The
construction of such an MCMC sampler is enabled by the sec-
ond important property of our artificial density, namely that it is
constructed in such a way that we are able to sample from the
conditional φ(x−j1:T

1:T , i2:T | θ, xj1:T1:T , j1:T ). Here we have intro-

duced the notation x−j1:T
1:T = {x−j1

1 , . . . , x−jT
T } and x−jt

t =

{x1t , . . . , x(jt)−1
t , x

(jt)+1
t , . . . , xNt }. Sampling from this condi-

tional can be done by running a so called conditional APF, given in
Algorithm 2. The CAPF is similar to the conditional SMC intro-
duced in [1], but with the addition of step 2(b). The reason for this
difference lies in the interpretation of the indices j1:T . Here they
correspond to backward trajectory indices, whereas in the original
PG sampler they are used to define an ancestral path.

As a final component of the PG-BSi sampler we need a way to
generate a sample state trajectory. As previously pointed out, we
aim to do this by running a backward simulator. The fact that the
backward simulator indeed generates a sample from one of the con-
ditionals of φ is assessed in the following proposition.

Proposition 2. The conditional φ(j1:T | θ,x1:T , i2:T ) under φ is
given by,

φ(j1:T | θ,x1:T , i2:T ) =
wjT

T∑
l w

l
T

T∏
t=2

w
jt−1
t−1 fθ(x

jt
t | xjt−1

t−1 )∑
l w

l
t−1fθ(x

jt
t | xlt−1)

.

Consequently, the backward simulator given in Algorithm 1, condi-
tioned on {θ,x1:T , i2:T }, generates a sample from this conditional
distribution. �

We are now ready to present the PG-BSi sampler, given in Algo-
rithm 3. Based on the propositions and discussion above, the three
steps of the method [2(a)–2(c)] can be interpreted as:

(a) Draw θ� ∼ φ(θ | xj1:T1:T , j1:T ),

(b) Draw x�,−j1:T
1:T , i�2:T ∼ φ(x−j1:T

1:T , i2:T | θ�, xj1:T1:T , j1:T ),

(c) Draw j�1:T ∼ φ(j1:T | θ�,x�,−j1:T
1:T , i�2:T , x

j1:T
1:T ).

Hence, each step of Algorithm 3 is a standard Gibbs update, tar-
geting the distribution φ, and will thus leave φ invariant (step (a) is

Algorithm 3 PG-BSi – particle Gibbs with backward simulation

1. Initialise: Set θ(0), x1:T (0) and j1:T (0) arbitrarily.
2. For r ≥ 1, iterate:

(a) Sample θ(r) ∼ p(θ | x1:T (r − 1), y1:T ).

(b) Run a CAPF targeting pθ(r)(x1:T | y1:T ), conditioned on
{x1:T (r − 1), j1:T (r − 1)}.

(c) Run a backward simulator to generate j1:T (r). Set x1:T (r)
to the corresponding particle trajectory.

known as a collapsed Gibbs update, see e.g. [3, Sec. 6.7]). It follows
that φ is a stationary distribution of the PG-BSi sampler. To estab-
lish its validity as an MCMC method, the only thing that remains is
to show that it is ergodic (and hence converges towards its station-
ary distribution). This property is established for the PG sampler in
[1, Theorem 5] and the same result holds, with a similar argument,
for the PG-BSi sampler. Hence, we shall not elaborate on this fur-
ther, but simply conclude that the PG-BSi sampler indeed is a valid
MCMC sampler.

4. NUMERICAL ILLUSTRATION

We have argued that the PG-BSi sampler in Algorithm 3 should be
preferable over the standard PG sampler in the sense that it produces
a Gibbs sampler with better mixing properties. In Section 4.1 we il-
lustrate this on a numerical example and show that PG-BSi can be far
superior to PG for certain settings, and in Section 4.2 we discuss the
reason for the big difference in performance between the algorithms.

4.1. Numerical example

We reuse an example from [1], used to illustrate the particle MCMC
methods presented there. Consider the following state-space model,

xt+1 = 0.5xt + 25
xt

1 + x2t
+ 8 cos(1.2t) + vt, (4a)

yt = 0.05x2t + et, (4b)

where x1 ∼ N (0, 5), vt ∼ N (0, σ2
v) and et ∼ N (0, σ2

e); here
N (0, σ2) denotes a zero-mean Gaussian with variance σ2. We set

θ =
(
σ2
v σ2

e

)T
.

We generate a set of observations y1:500 according to (4) with
σ2
v = 10 and σ2

e = 1. The parameter priors are modelled as in-
verse gamma distributed with hyperparameters a = b = 0.01. We
then employ the PG sampler of [1] and the PG-BSi sampler of Al-
gorithm 3 to estimate the posterior parameter distribution. Since the
theoretical validity of the PG-BSi and the PG samplers can be as-
sessed for any number of particles N ≥ 2 (see [1, Theorem 5]), it
is interesting to see the practical implications of using very few par-
ticles. Hence, we run the methods four times on the same data with
N = 5, 20, 1000 and 5000 (N = 5000 as was used in [1]). The

parameters are initialised at θ(0) =
(
10 10

)T
in all experiments.

In Figure 1 we show the estimated posterior means of the stan-
dard deviations σv and σe (i.e. the square roots of the means of
θ(1 : r)) as functions of the number of MCMC iterations r. The
left column shows the results for the PG sampler. When we use
N = 5000 particles, there is a rapid convergence indicating that
the method mixes well, and quickly finds a region of high posterior
probability. However, as we decrease the number of particles, the
convergence gets much slower. Even for N = 1000, the method
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Fig. 1. Running posterior means of the standard deviations σv and σe for the PG sampler (left) and PG-BSi sampler (right) for different
number of particles. The “true” values are shown as thick solid lines. Note that the estimate of σv do not converge to this “true” value, but
this is not surprising since we consider just one data realisation. Hence, the posterior mean may very well differ from the “true” value.

struggles and for N = 20 and N = 5 it does not seem to converge
at all (in a reasonable amount of time). On the contrary, the PG-
BSi sampler (right column) seems to be more or less unaffected by
the large decrease in the number of particles. In fact, the PG-BSi
sampler using just N = 5 performs equally well as the PG sam-
pler using N = 1000 particles. It could be argued that one of the
major strengths of particle MCMC methods is that they do not re-
quire an accurate approximation of the joint smoothing distribution
at each iteration, but merely a single sample which is approximately
distributed according to it. Hence, we do not need to waste compu-
tational resources on using too many particles, since we only extract
a single particle trajectory anyway. However, for this to be true for
the PG sampler, it seems crucial to complement it with a backward
simulation pass.

4.2. Discussion

In the previous section we saw that the mixing of the PG sampler
worsened significantly when we decreased the number of particles,
whereas the PG-BSi sampler seemed to be more or less unaffected.
This can be explained in terms of the well known degeneracy prob-
lem for particle filters. Let x1:T (r) be the state trajectory sampled
at iteration r of the PG sampler. At iteration r + 1 we run a CAPF,
conditioned on x1:T (r). Due to degeneracy, all particle trajectories
generated by the CAPF will coincide for t � T . Now, since we
condition on x1:T (r), the particle tree generated by the CAPF must
contain x1:T (r). Hence, when we sample the trajectory x1:T (r+1)
at iteration r+1, this will to a large extent be identical x1:T (r). This
results in a poor exploration of the state space, which in turn leads to
a slowly mixing Gibbs kernel.

The PG-BSi method is able to circumvent this by exploring all
possible particle combinations when generating a particle trajectory,
and is thus not constrained to one of the ancestral paths. Due to this,
the sample trajectory x1:T (r + 1) will, with high probability, be en-
tirely different from x1:T (r). This leads to a much better exploration
of the state space and thus a faster mixing Gibbs kernel.

5. CONCLUSIONS

We have investigated the possibility to apply a backward simulator
to generate a sample trajectory in the particle Gibbs (PG) sampler.

We have shown that this indeed leads to a valid MCMC method. To
enable this we introduced a slight modification of the conditional
particle filter, used in the original PG sampler. We have shown in
a numerical example that the mixing of the Gibbs kernel can be
increased substantially by using backward simulation. This is true
especially when we use few particles and/or when the number of ob-
servations is large. As opposed to the original PG sampler (without
backward simulation), the PG sampler with backward simulation is
shown to be rather insensitive to a decreased number of particles.
In a numerical example, for which the original PG sampler required
around 1000 particles, the proposed method could manage with as
few as 5 particles.
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