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ABSTRACT
We study robust least squares problem with bounded data
uncertainties in a competitive algorithm framework. We
propose a competitive least squares (LS) approach that
minimizes the worst case “regret” which is the difference
between the squared data error and the smallest attainable
squared data error of an LS estimator. We illustrate that
the robust least squares problem can be put in an SDP
form for both structured and unstructured data matrices and
uncertainties. Through numerical examples we demonstrate
the potential merit of the proposed approaches.

Index Terms— Robust least squares, deterministic, min-max,
regret.

I. INTRODUCTION

We investigate robust least squares (LS) problem with
bounded data uncertainties. We consider least-squares prob-
lem, where we estimate a deterministic signal observed
through a data matrix. However, the observed data matrix
and the output vector are not exactly known, but an estimate
and an uncertainty bound are provided for both the data
matrix and the output vector. Since the observed data matrix
and the output vector are not exactly known, one may not
obtain the optimal solution with the standard LS method. In
order to find a robust solution for the transmitted signal, one
may optimize the worst case data error as in [1]. However,
the min-max approach studied in [1] may yield overly
conservative solutions since the cost function is minimized
for the worst case perturbations. In order to counterbalance
the conservative character of [1] we propose a competitive
LS approach minimizing the worst case “regret” which is the
difference between the squared data error and the smallest
attainable squared data error with an LS estimator.

Research related to the least squares problem has been
performed extensively in the signal processing literature
[2], [3]. In many applications, the observed output vec-
tor and the data matrix in a least squares problem may
not match to the “true” data matrix and output vector.
These parameters may be subject to errors due to high
energy noise in measurements or estimation procedure in
which incorrect model assumptions may be are made. One
appealing approach to find robust solutions is the robust
LS method [1], where the uncertainties in the data matrix

and the output vector are incorporated into optimization
via min-max formulation approach. Furthermore, in many
linear regression problems, the data matrix has a special
structure, e.g., Toeplitz. Integrating this prior knowledge
in the problem formulation improves the performance of
LS approaches [1]. However, we emphasize that the robust
LS approach is a pessimistic approach since the data error
is minimized for the worst perturbations under uncertainty
bounds. To alleviate the pessimistic nature of the robust LS
approach, we use the min-max regret approach [4], [5].

Here, we consider a competitive approach to estimate
the input signal where the coefficient matrix is subject to
deterministic perturbations and seek a linear estimator whose
performance is as close as possible to that of the optimal
estimator for all possible values of the perturbations on the
coefficient matrix and output vector. We emphasize that the
competitive method studied in this paper significantly differs
from [1], [4], [5]. Note that, the cost function studied here
is different than [1], where the regret term is appended in
the cost function, and the solutions for the competitive LS
problem are provided in the SDP form for both unstructured
perturbations and structured perturbations. Although in [4],
[5] a similar regret notion is used, the cost function as well
as the constraints are substantially different here.

The paper is organized as follows. In Section II, we
provide the problem framework. In section III and IV, we
introduce the proposed unstructured and structured compet-
itive LS approaches and provide the SDP formulations. In
section V, the numerical examples are given and the paper
concludes in section VI.

II. SYSTEM DESCRIPTION

Consider the problem of estimating a deterministic vector
x ∈ R

n which is observed through a deterministic data
matrix. However, the actual coefficient matrix and the output
vector are not known but their estimates A ∈ R

mxn (where
m ≥ n) and y ∈ R

m and uncertainty bound on the estimates
are provided. Here, we assume that A is of full rank. Our
aim is to solve the least squares problem Ax ≈ y, such that
(A+ΔA)x = y+Δy for some deterministic perturbations
ΔA ∈ R

mxn, Δy ∈ R
m which are unknown but bounds on

each of the perturbation are provided, i.e., ‖ΔA‖ ≤ ρA and
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‖Δy‖ ≤ ρY , where ρA, ρY ≥ 0. 1

In order to estimate x one may substitute the estimates
A and y into the LS estimator and obtain the following LS
solution

x̂ = (I−A(ATA)−1AT )y. (1)

However, this approach yields inferior results when the
errors in the estimates are relatively high [1], [4], [5]. Hence,
in order to find a robust solution one may use the worst case
residual approach [1]

x̂ = argmin
x

max
‖ΔA‖≤ρA,‖Δy‖≤ρY ,

‖(A+ΔA)x− (y +Δy)‖
2
,

(2)
where x is found by minimizing the worst case error under
the uncertainty bounds. Since in this min-max approach,
the worst case residual is minimized, the solution may be
highly conservative [1], [4], [5]. In order to compensate
the conservative nature of this solution and to preserve
robustness, we introduce a competitive LS approach which
provides a trade off between the performance and robustness
[4], [5]. We define the regret for not using the optimal LS
method as the difference between the squared data error with
an estimate of the input vector and the squared data error
with the LS estimator as

r(A,y)
�
= ‖(A+ΔA)x− (y +Δy)‖

2

−min
v

‖(A+ΔA)v − (y +Δy)‖
2
,

where ‖ΔA‖ ≤ ρA, and ‖Δy‖ ≤ ρY , ρA, ρY ≥ 0. In the
next section, the formulation of our approach is provided.

III. UNSTRUCTURED ROBUST LEAST SQUARES

In this section, we consider a competitive LS approach in
a certain min-max framework. Given A ∈ R

mxn, m ≥ n,
y ∈ R

m, and ρA, ρY ∈ R
+, we seek to find x that solves

min
x

max
‖ΔA‖≤ρA,‖Δy‖≤ρY

{
‖(A+ΔA)x− (y +Δy)‖

2

−min
v

‖(A+ΔA)v − (y +Δy)‖2
}
. (3)

Defining Ã = A+ΔA, ỹ = y +Δy and inserting the LS
solution in (3) yields

min
x

max
‖ΔA‖≤ρA,‖Δy‖≤ρY

{
‖Ãx− ỹ‖

2
− ‖(I− ÃÃ

+
)ỹ‖2

}
,

(4)
where Ã

+ �
= (Ã

T
Ã)−1Ã

T
is the pseudo inverse of Ã and

P⊥
α

�
= (I − ÃÃ

+
) is the projection matrix of the space

perpendicular to the range space of Ã. Here, we assume that

1Throughout the paper, all vectors are column vectors and represented by
boldface lowercase letters. Matrices are represented by boldface uppercase
letters. Given a vector x, ‖x‖ =

√
xTx is the l2-norm, xT is the transpose.

For a matrix A, ‖A‖ implies the Frobenius norm. For a square matrix M,
Tr(M) is the trace. Contingent upon the context, 0 denotes a vector or
matrix with all zero elements,where the dimension can be deduced from the
context. The vec(.) operator stacks the columns of a matrix of dimension
mxn into a mnx1 by 1 column vector [6].

Ã is of full rank. If we define f(Ã, ỹ)
�
= ‖(I− ÃÃ

+
)ỹ‖2,

and use the first order Taylor series approximation [6] for
f(Ã, ỹ), then we get

f(Ã, ỹ) = f(A,y) + 2Tr

{
∇f(Ã, ỹ)|T

Ã=A,ỹ=y

[
ΔA Δy

]}
+O

(
‖
[
ΔA Δy

]
‖2
)
. (5)

Based on this approximation, the regret can be written as

r(A,y) ≈ ‖(A+ΔA)x− (y +Δy)‖
2
− f(A,y)

− 2Tr

{
∇f(Ã, ỹ)|T

Ã=A,ỹ=y

[
ΔA Δy

]}
.

To calculate ∇f(Ã, ỹ) we introduce the following lemma.

Lemma 1: Let A ∈ R
mxn, y ∈ R

n and define f(A,y)
�
=

yT (I−AA+)y, then

∂f(A,y)

∂A
= −2A(ATA)−1ATyyTA(ATA)−1−2yyTA(ATA)−1.

(6)
Proof: Based on [6], we take the partial derivative of f(A,y)
with respect to Akl.

∂f(A,y)

∂Akl

= −yT
[
2eke

T
l (A

TA)−1AT

− 2A(ATA)−1AT eke
T
l (A

TA)−1AT +A(ATA)−1ele
T
k

]
y

= eTl (A
TA)−1ATyyTek + eTk yy

TA(ATA)−1el

− 2eTl (A
TA)−1ATyyTA(ATA)−1ATek. (7)

Since the transpose of the term in (7) is by definition the
kl-th entry of the matrix
−2

[
yyTA(ATA)−1 −A(ATA)−1ATyyTA(ATA)−1

]
the result in (6) follows. �
Also, from [6]

∂f(A,y)

∂y
= 2(I−AA+)y = 2P⊥

αy. (8)

By using Lemma 1 and (8) in (5), we get

f(Ã, ỹ) ≈ η − 2(yTΔAb+ yTAA+ΔAb) + 2yTP⊥
αΔy

= η − 2[yTBa+ yTA+Ba− yTP⊥
αΔy] (9)

= η + cTa+ aT c+ΔyTP⊥
αy + yTP⊥

αΔy,

(10)

where η
�
= yT (I−AA+)y, b = A+y, and c = −(yTB+

yTA(ATA)−1ATB)T . Equation (9) follows since ΔAb =

Ba, where, a = vec
(
ΔAT

)
and B is an mxmn matrix

constructed by b as

B
�
=

⎡
⎢⎢⎢⎢⎢⎢⎣

b
T

0 . . . . . . 0

0 bT 0 . . . 0
... 0

. . .
. . .

...
...

. . .
. . .

. . . 0

0 . . . . . . 0 bT

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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In the following theorem, we demonstrate how to convert
the min-max regret problem (4) into an SDP formulation.
Theorem 1: Let A ∈ R

mxn, m ≥ n, y ∈ R
m, and ρA, ρY ∈

R
+, then

min
x

max
‖ΔA‖≤ρA,‖Δy‖≤ρY

{
‖(A+ΔA)x− (y +Δy)‖

2

− η − 2Tr
{
∇f(Ã, ỹ)|T

Ã=A,ỹ=y

[
ΔA Δy

] }}
(11)

is equivalent to solving

min λ subject to⎡
⎢⎢⎣

λ+ η − τ − θ (Ax− y)
T

ρAc
T ρY y

TP⊥
α

(Ax− y) I ρAX −ρY I

ρAc ρAX
T τI 0

ρY P
⊥
αy −ρY I 0 θI

⎤
⎥⎥⎦ ≥ 0,

(12)
where η

�
= yT (I − AA+)y, τ, θ ≥ 0 and X is an mxmn

matrix constructed by x as

X
�
=

⎡
⎢⎢⎢⎢⎢⎢⎣

xT 0 . . . . . . 0

0 xT 0 . . . 0
... 0

. . .
. . .

...
...

. . .
. . .

. . . 0

0 . . . . . . 0 xT

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Proof: By using (10) and applying S-procedure [7] to (11),
it follows that (11) is equivalent to

min λ subject to[
λ+ η +ΔyTP⊥

αy + yTP⊥
αΔy (Ax− ỹ)

T

(Ax− ỹ) I

]

≥ −

[
cT

X

]
a
[
1 0

]
−

[
1
0

]
aT

[
c XT

]
, (13)

where a = vec(ΔAT ), and ΔAx = Xa. By applying
Proposition 2 of [4] two times to (13) results (12). �

IV. STRUCTURED ROBUST LEAST SQUARES
In the previous section, the perturbations on the data

matrix and the output vector do not have a special structure.
However, in many applications the data matrix has a special
structure, e.g., Toeplitz, hence the perturbations on them. A
solution to competitive LS problem with this prior knowl-
edge may improve the performance of the min-max regret
approach. Therefore, in this section, we consider a special
case of the problem (3). Here, the associated perturbations
for A and y are structured. We define the structure on the
perturbations as ΔA =

∑n
i=1 αiAi and Δy =

∑n
i=1 βiyi,

where Ai and yi are known and but αi, βi ∈ R, i =
1, . . . , n are not known. However, bounds on the norm of
α

�
=

[
α1 α2 . . . αn

]T
and β

�
=

[
β1 β2 . . . βn

]T
are provided as ‖α‖ ≤ ρA, ‖β‖ ≤ ρB , ρA, ρY ≥ 0. We seek
to solve the following optimization problem:

min
x

max
‖α‖≤ρA,‖β‖≤ρB

[
‖A(α)x− y(β)‖2 −min

v
‖A(α)v − y(β)‖2

]
,

(14)

where A(α) = A+
∑n

i=1 αiAi, y(β) = y +
∑n

i=1 βiyi,
and ρA, ρB ≥ 0. Substituting the LS solution to (14) yields

min
x

max
‖α‖≤ρA,‖β‖≤ρB

{‖A(α)x− y(β)‖2−‖(I−A(α)A(α)+)y(β)‖2},

(15)

where A(α)+
�
= (A(α)TA(α))−1A(α)T is the pseudo

inverse of A(α) and P⊥
α

�
= (I −A(α)A(α)+) is the pro-

jection matrix of the space perpendicular to the range space
of A(α). We use the first order Taylor series approximation
to express the term y(β)T (I−A(α)A(α)+)y(β) as

y(β)T (I−A(α)A(α)+)y(β) = y(0)T (I−A(0)A(0)+)y(0)

+ 2Tr{∇[α β]‖P
⊥
αy‖

2‖T
[α β]=0[α β]}+O

(
‖[α β]‖2

)
.

(16)

If we denote the regret term as

r(A,y) = ‖A(α)x− y(β)‖
2
−‖(I−A(α)A(α)+)y(β)‖2,

then based on (16) the regret can be written as

r(A,y) ≈ ‖A(α)x− y(β)‖
2
− y(0)T (I−A(0)A(0)+)y(0)

− 2Tr{∇[α β]‖P
⊥
αy‖

2‖T
[α β]=0[α β]}. (17)

In order to compute the last term in (17), we introduce the
following lemma.
Lemma 2: Let A,A1, . . . ,An ∈ R

mxn, y ∈ R
m and define

f(A(α),y)
�
= yT (I−A(α)A(α)+)y where A(α) = A+∑n

i=1 αiAi, then ∂f(A(α),y)
∂αi

= −2yTP⊥
αAiA(α)+y.

Proof: Using the result of Lemma 1,

∂f(A(α),y)

∂αi

= Tr

{
∂f(A)

∂A

T
∂A

∂αi

}
= −2yTP⊥

αAiA
+y,

where Pα
�
= A(α)A(α)+ is the projection matrix into the

range space of A(α). �
From Lemma 2 it follows that
∂

∂αi
(y(β)TP⊥

αy(β)) = −2y(β)TP⊥
αAiA(α)+y(β).

Also, ∂
∂βi

(y(β)TP⊥
αy(β)) = 2y(β)TP⊥

αyi. If

we denote η
�
= y(0)T (I − A(0)A(0)+)y(0),

b
�
= 1

2∇α‖P⊥
αy(β)‖

2|α=0,β=0, and c
�
=

1
2∇β‖P

⊥
αy(β)‖

2|α=0,β=0, then (16) is equal to

y(β)T (I−A(α)A(α)+)y(β) = η+bTα+αTb+βT c+cTβ.

(18)
In the following theorem, by using the result (18) in (15), we
show that the problem (15) can be cast as an SDP problem.
Theorem 2: Let A,A1, . . . ,An ∈ R

mxn, where m ≥ n.
Also, let y,y1, . . . ,yn ∈ R

m, and ρA, ρB ∈ R
+, then

min
x

max
‖α‖≤ρA,‖β‖≤ρB

{‖A(α)x − y(β)‖
2
− η

− 2Tr{∇[α β]‖P
⊥
αy‖

2|T
[α β]=0[α β]}}, (19)

is equivalent to solving the following SDP problem

minλ subject to
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⎡
⎢⎢⎣

λ+ η − τ − θ (Ax− y)T ρAb
T ρBc

T

Ax− y I ρM −ρBQ

ρAb ρMT τI 0

ρBc −ρBQ
T 0 θI

⎤
⎥⎥⎦ ≥ 0,

where η
�
= y(0)T (I − A(0)A(0)+)y(0), α

�
=[

α1 α2 . . . αn

]T
, A(α) = A +

∑n
i=1 αiAi, β

�
=[

β1 β2 . . . βn

]T
, y(β) = y +

∑n
i=1 βiyi, M

�
=[

A1x A2x . . . Anx
]

and Q =
[
y1 . . . yn

]
.

Proof: The proof follows similar lines to the proof of
Theorem 1. �
For reference, based on the proof of Theorem 1, it can be
shown that the problem of

min
x

max
‖α‖≤ρ

‖A(α)x − y(α)‖
2

is equivalent to
min λ subject to⎡

⎣ λ− τ (Ax− y)T 0

Ax− y I ρM

0 ρMT τI

⎤
⎦ ≥ 0,

where A(α) = A +
∑n

i=1 αiAi, y(α) =

y +
∑n

i=1 αiyi, ρ ≥ 0, and M
�
=[

A1x− y1 A2x− y2 . . . Anx− yn

]
.

V. NUMERICAL EXAMPLES
In this section, we demonstrate the performance of the

introduced algorithms through numerical examples. In Fig.
1, we present error results for the algorithm in Theorem 1
as “C-LS”, for robust LS algorithm [1] tuned to the worst
perturbations as “R-LS” and finally for the least squares
method tuned to the estimates A + ΔA and y + Δy as
“LS”. We randomly generate a data matrix A of size mxn,
an output vector y of size mx1, and normalize them, i.e.,
‖A‖ = 1, and ‖y‖ = 1. Then, we randomly generate 200
random perturbations ΔA, Δy, where ‖dA‖ ≤ ρA and
‖Δy‖ ≤ ρY , where m = 3, n = 2, ρA = ρY = 0.4, and
plot the corresponding errors sorted in ascending order. The
largest error for ρA = ρY = 0.4 and given the random A

are: 1.634 for the LS algorithm, 1.069 for the C-LS algorithm
and 1.017 for the R-LS algorithm. We observe that since the
R-LS algorithm optimizes the worst case squared error with
respect to worst possible disturbance, it yields the smallest
worst case squared error among all algorithms for these
simulations. Nevertheless, due to this highly conservative
nature, the overall performance of the R-LS algorithm is
significantly inferior to the LS and the C-LS algorithms.
Furthermore, we observe that the C-LS algorithm provides
superior average performance compared to the R-LS and the
LS algorithms, and superior worst case error compared to
the “LS” algorithm for these simulations. From Fig. 1, we
observe that the R-LS algorithm yields the smallest worst
case error, since this algorithm optimizes the data error
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Fig. 1. Sorted erros for “R-LS”, “C-LS” and “LS” algorithms over
200 trials when ρA = ρY = 0.4.

with respect to the worst perturbations. In addition, the LS
algorithm yields the highest worst case error. Although the
worst case error of the C-LS algorithm is larger than the
worst case error of the R-LS algorithm, the C-LS approach
provides a superior performance on the average with respect
to both te R-LS and the LS algorithms.

VI. CONCLUSION
We introduced a competitive LS approach when the data

parameters are subject to uncertainties. We investigated
robust LS problem for both unstructured and structured
perturbations. We demonstrated that finding the estimators
that minimize the worst case regret formulations can be
cast as SDP problems. Through numerical examples, we
demonstrate the performance of the proposed algorithms.

VII. REFERENCES
[1] L. El Ghaoui and H. Lebret, “Robust solutions to least-

squares problems with uncertain data,” SIAM Journal on
Matrix Analysis and Applications, vol. 18, no. 4, pp. 1035–
1064, 1997.

[2] B. Ottersten, M. Viberg, and T. Kailath, “Performance analysis
of the total least squares esprit algorithm,” IEEE Trans. on
Signal Processing, vol. 39, no. 5, pp. 1122–1135, 2002.

[3] K. Koh, S. Kim, S. Boyd, and Y. Lin, “An interior-point method
for large-scale l1-regularized logistic regression,” Journal of
Machine Learning Research, vol. 2007, 2007.

[4] Y.C. Eldar and N. Merhav, “A competitive minimax approach
to robust estimation and random parameters,” IEEE Trans. on
Signal Processing, vol. 52, pp. 1931–1946, 2004.

[5] Y.C. Eldar, A. Ben-Tal, and A. Nemirovski, “Linear minimax
regreat estimation of deterministic parameters with bounded
data uncertainties,” IEEE Trans. on Signal Processing, vol. 52,
pp. 2177–2188, 2004.

[6] A. Graham, Kronecker Products and Matrix Calculus: with
Applications, John Wiley and Sons, 1981.

[7] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear
Matrix Inequalities in System and Control Theory, Studies in
Applied Mathematics, 1994.

3844


