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ABSTRACT

Parametric signals that have a finite number of degrees of freedom
per unit of time are defined as signals with Finite Rate of Innovation
(FRI). Sampling and reconstruction schemes have been developed
based on the 1D FRI principle and applied to reconstructing step
edge images on a row by row basis. In this paper, we derive the 2D
FRI principle by exploiting the separability of the B-spline sampling
kernel. The proposed 2D FRI principle regards the sampling and
reconstruction as block by block operations. The step-edge parame-
ters can be retrieved in high accuracy with no post-processing. The
performance on synthetic images shows that our proposed technique
is more precise than the row by row approaches on Signal-to-Noise
Ratio (SNR) levels larger than 4 dB. Experimental results on real
images demonstrate that the proposed method can reconstruct the
step-edge precisely under noisy and practical sampling conditions.

Index Terms— Two dimensional Finite Rate of Innovation,
Step-edge reconstruction, B-spline kernel.

1. INTRODUCTION

The signals with finite rate of innovation (FRI) are defined such that
they can be expressed in a parametric form and have a finite number
of degrees of freedom per unit of time [1]. New sampling schemes
have been developed for perfect reconstruction of the FRI signals by
using Sinc or Gaussian sampling kernels. Dragotti et al. generalized
the sampling scheme to three types of kernels with compact support
[2], i.e., polynomial reproducing kernels, exponential reproducing
kernels, and rational kernels.

Following [2], Shukla et al. extended the sampling schemes
to multi-dimension with the polynomial reproducing kernels and
proposed three reconstruction schemes [3]. Nevertheless, these
reconstruction schemes were developed under the noise free as-
sumption. Baboulaz et al. developed a local reconstruction scheme
for the step-edge with a polynomial reproducing kernel [4], i.e.,
the B-spline kernel. The extracted local features can be applied
to the registration step in a super-resolution task, and had better
performances compared to the traditional approach. Hirabayashi
et al. proposed reconstruction schemes [5, 6] with the trigono-
metric and hyperbolic E-spline kernels to achieve better accuracy.
Baboulaz’s and Hirabayashi’s approaches were still based on the 1D
FRI principle which treats the images row by row. However, in the
image acquisition process the samples are always affected by both
horizontal and vertical neighborhoods.

In this paper, the image is regarded on a block by block ba-
sis so as to exploit the vertical correlations between different rows.
We derive the 2D FRI principle by exploiting the separability of the
B-spline kernel. The 2D FRI principle regards the sampling and re-
construction as block by block operations. Reconstruction results on

both synthetic and real step-edge images demonstrate that the pro-
posed reconstruction scheme is more precise with Signal-to-Noise
Ratio (SNR) levels larger than 4 dB.

This paper is organized as follows: Section 2 briefly reviews
the existing step-edge reconstruction approaches. Section 3 presents
our proposed method based on the 2D FRI principle. Comparisons
on both synthetic and real step-edge images between the proposed
method and the existing approaches are given in Section 4. Finally,
Section 5 concludes this paper.

2. EXISTING STEP-EDGE RECONSTRUCTION
METHODS

The Hough transform [7] is a traditional step-edge reconstruction
approach which includes two steps, i.e., an edge detection step and
a voting step for parameter estimation. Popovici et al. [8] devel-
oped a step-edge reconstruction method by the Custom-built mo-
ments which use a testing function in an integral to find the edge
parameters.

The 1D FRI principle [1] has been developed to retrieve the sig-
nal parameters from its sampled version. Recently, Baboulaz et al.
[4] treated a step-edge as rows of 1D FRI signal and reconstructed
it in a sampling framework using the B-spline kernel. First, the 1D
moments were obtained by a weighted sum of the differentiated sam-
ples in each row. The step-edge parameters in each row were then
found in terms of the 1D moments. Finally, the estimation process
was iterated row by row along an edge. The estimated step-edge
parameters were obtained by averaging over edge points that have
similar parameters. However, only the 1D moments from two con-
secutive rows were considered at a time in the estimation process,
and the estimation results from different rows can have large vari-
ations under noisy condition. The edge points from the same step-
edge cannot be identified precisely by the similarity measure stated
in [4]. Even when the estimation results are averaged over multi-
ple rows, the errors are still significant. Such limitation can also be
found in Hirabayashi’s approaches [5, 6].

3. PROPOSED RECONSTRUCTION SCHEME BASED ON
THE 2D FRI PRINCIPLE

3.1. The Sampling Setup

The sampling setup that is considered in this paper can be described
by

g(m,n) =
1

T 2

∫ ∫
f(x, y)β(x/T −m, y/T − n)dxdy

=
1

T 2

〈
f(x, y), β(x/T −m, y/T − n)

〉
(1)
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Fig. 1: The illustration for step-edge model with amplitude α, orien-
tation θ and offset γ. The pixels are represented as grids.

where a 2D FRI signal in continuous domain f(x, y) is filtered by
the B-spline kernel β(x, y) with sampling period T , the filtered ver-
sion g(x, y) is sampled and discretized to yield the sample values
g(m,n), and 〈·, ·〉 is the inner product operation.

Here, we briefly describe the B-spline kernel and its properties
to facilitate our further discussion. A 1D zeroth order B-spline sam-
pling kernel β(0)(x) [9] is given as:

β(0)(x) =

⎧⎨
⎩

1, − 1
2
< x < 1

2
1
2
, |x| = 1

2
0, otherwise

. (2)

By successively convolving P +1 zeroth order B-spline kernels, the
B-spline kernels of order P can be obtained [9]. Note that the B-
spline kernel is a polynomial reproducing kernel [2]. For T = 1, we
have ∑

m∈Z

c(p)m β(P )(x−m) = xp, p = 0, 1, . . . , P (3)

where c
(p)
m is the the B-spline coefficient. The B-spline kernel of

order P can reproduce a polynomial up to order P . The polynomial
reproducing property of the B-spline kernel can be extended to two
dimensions [9] as follows

xpyq =
∑
m

c(p)m β(P )(x−m)
∑
n

c(q)n β(Q)(y − n)

=
∑
m

∑
n

c(p,q)m,n β(P,Q)(x−m, y − n) (4)

where p = 0, . . . , P , q = 0, . . . , Q, c
(p,q)
m,n = c

(p)
m ·c(q)n , β(P,Q)(x, y) =

β(P )(x) ⊗ β(Q)(y) and ‘⊗’ is the tensor product operation. In this
paper, we set P = Q.

3.2. The Proposed Reconstruction Scheme

As is shown in Fig. 1, in the sampling and reconstruction process, the
value at point A(x0, y0) is determined by its neighboring samples
covered by the sampling kernel (illustrated by a shaded 3× 3 pixels
region). We consider all related samples in the parameter estimation
step, rather than averaging the estimation results from each row in
the post-processing step.

The step-edge in the continuous domain is parameterized by the
amplitude α, orientation θ and offset γ [5]

h(x, y) = α ·H(−x sin θ + y cos θ + γ sin θ) (5)

where H(x, y) is a unit step function. The differentiated samples are
formulated by subsampling the horizontal derivative of the step-edge

h(x, y) using a modified 2D B-spline kernel [5], that is,

d(m,n) =
1

T 2

〈∂h(x, y)
∂x

, β(P+1)(
x

T
−m− 1

2
)⊗ β(P )(

y

T
− n)

〉
(6)

where β(P+1)( x
T

− m − 1
2
) ⊗ β(P )( y

T
− n) is the modified 2D

B-spline kernel.
Here, we present our 2D reconstruction scheme for a step-edge

h(x, y) with range x ∈ X = [x0, x1], y ∈ Y = [y0, y1]. Note
that the corresponding step edge image is defined over m ∈ M =
{m0,m1, . . . ,mI}, n ∈ N = {n0, n1, . . . , nJ}, where I, J ∈ Z

and vary according to the image size. Firstly, the 2D moments of the
image block are found by extending the 1D FRI principles [2] to two
dimensions, that is,

τ
(p,q)
M,N

=

∫
Y

∫
X

∂h(x, y)

∂x
(x− 1

2
)pyqdxdy (7)

(a)
=

1

T 2

∫
Y

∫
X

∂h(x, y)

∂x

[ ∑
m∈M

c(p)m β(P )(
x

T
−m− 1

2
)∗

β(0)(
x

T
−m− 1

2
)
][ ∑

n∈N
c(q)n β(P )(

y

T
− n)

]
dxdy

(b)
=

1

T 2

∫
Y

∫
X

∂h(x, y)

∂x

[ ∑
n∈N

∑
m∈M

c(p,q)m,n ×

β(P,P )(
x

T
−m− 1

2
,
y

T
− n) ∗ β(0)(

x

T
−m− 1

2
)
]
dxdy

=
1

T 2

∑
n∈N

∑
m∈M

c(p,q)m,n

∫
Y

∫
X

∂h(x, y)

∂x
×

β(P+1,P )(
x

T
−m− 1

2
,
y

T
− n)dxdy

(c)
=
∑
n∈N

∑
m∈Sn

c(p,q)m,n d(m,n) (8)

where in (a) we have used the polynomial reproducing property of
the modified B-spline kernel [2], in (b) we have exploited the sepa-
rability of the kernel as given in Eq. (4), and in (c) Eq. (6) has been
applied and we have identified Sn as the set of pixel indices that
are affected by the step-edge in each row. Hence, the 2D moments
can be obtained by a linear combination of the B-spline coefficients

c
(p,q)
m,n and the differentiated samples d(m,n) covered by the sam-

pling kernel.
After retrieving the 2D moments, we substitute the step-edge

model Eq. (5) into Eq. (7). By considering the sign of sin θ, a closed

form expression for τ
(p,q)
M,N can be obtained

τ
(p,q)
M,N = α · sgn(sin θ)

p∑
i=0

(
p

i

)
(γ − 1

2
)i

(tan θ)p−i

yK
0 − yK

1

K
(9)

where sgn(·) takes the sign of a real number, and K = p+q− i+1.
We need at least three sets of (p, q) to solve for α, θ and γ. The

smallest possible values of (p, q) should be chosen due to the char-
acteristic of B-spline coefficients [9], i.e., having a horizontal growth
rate of order p and a vertical growth rate of order q. For large (p, q),
highly different weights will be assigned to the samples which are far
from or near the kernel centers. This makes the reconstruction pro-
cess sensitive to noise [5]. We choose (p, q) = (0, 0) and (1, 0), so
that the B-spline coefficients will be constant or increasing linearly.

3834



(a) (b)

Fig. 2: The experimental results of Baboulaz’s approach [4], Hirabayashi’s approach [5] and our proposed approach. (a) the standard deviation
for θ, (b) the standard deviation for γ.

The image block is of size N × M which is divided into the
upper and lower parts, i.e., m ∈ M = {m0,m1, . . . ,mI} and
n ∈ Nu ∪Nl = {n0, n1, . . . , n0 +N/2− 1} ∪ {n0 +N/2, n0 +
N/2+1, . . . , nJ}. It corresponds to x ∈ [x0, x1] and y ∈ [y0, y0+
N/2] ∪ (y0 + N/2, y1] in the continuous domain. Then, these two
parts are substituted into the closed form expression Eq. (9). For
θ ∈ [0, π], we have

τ
(0,0)
M,Nu

= α
[
y0 − (y0 +

N
2
)
]

τ
(0,0)
M,Nl

= α
[
(y0 +

N
2
)− y1

]
τ
(1,0)
M,Nu

= α
[
(γ − 1

2
)(y0 − (y0 +

N
2
)) +

y2
0 − (y0 +

N
2
)2

2 tan θ

]
τ
(1,0)
M,Nl

= α
[
(γ − 1

2
)((y0 +

N
2
)− y1) +

(y0 +
N
2
)2 − y2

1

2 tan θ

]
.

(10)

Similarly, for θ ∈ (π, 2π], we substitute the two image parts
into Eq. (9) which leads to another system of equations with

τ
(0,0)
M,Nu

, τ
(0,0)
M,Nl

, τ
(1,0)
M,Nu

and τ
(1,0)
M,Nl

. Together with Eq. (10), we
solve the two systems of equations for the step edge parameters as

α = − sgn(sin θ)
τ
(0,0)
M,Nu

+ τ
(0,0)
M,Nl

N

tan θ =
N(τ

(0,0)
M,Nu

+ τ
(0,0)
M,Nl

)

4(τ
(1,0)
M,Nl

− τ
(1,0)
M,Nu

)

γ =
3 · τ (1,0)

M,Nu
− τ

(1,0)
M,Nl

τ
(0,0)
M,Nu

+ τ
(0,0)
M,Nl

+
1

2

. (11)

To this end, we have found the relationship between the 2D mo-
ments of the differentiated samples and the step-edge parameters.
No averaging step is needed.

Our step-edge reconstruction approach can be briefly summa-
rized as follows:

1. Compute the horizontal differentiated samples d(m,n);

2. Find the edge map of h(x, y) using an edge detector, e.g., the
Canny edge detector;

3. Trace the edge pixels along each row to determine the region
of interest (ROI), i.e., Sn in each row;

4. Use the horizontal differentiated samples in ROI to compute

the 2D moments τ
(p,q)
M,Nu

and τ
(p,q)
M,Nl

with Eq. (8);

5. Find the set of step-edge parameters α, tan θ, and γ with the
obtained 2D moments and Eq. (11).

4. COMPARISONS WITH THE EXISTING APPROACHES

4.1. Experimental Results on Synthetic Step-Edges

In this section, we compare the results of our proposed method with
those obtained using Baboulaz’s approach [4] (using the same sam-
pling kernel) and Hirabayashi’s approach [5] (which has achieved
the best accuracy in the literature) on low resolution (LR) synthetic
image blocks. A high resolution (HR) synthetic step-edge image
with parameters α = 1, θ = π/4, γ = 0 and size 512× 512 pixels
is created. The LR versions of size 8×8 pixels are obtained by filter-
ing and downsampling the HR step-edge images using the B-spline
and E-spline kernels, respectively. The kernel centers are set as the
image centers. The Gaussian noise with zero mean and variance σ2

n

is added to the LR images, and the SNR level varies from 0 to 30
dB. From the noisy and heavily downsampled step-edge image, the
ground truth step-edge parameters in the high resolution image are
to be estimated. The standard deviations of the estimations are com-
puted over 1000 realizations.

Figure 2 compares the standard deviation for the step-edge pa-
rameter orientation θ and offset γ of the proposed technique with
the row by row approaches. In Fig. 2 (a), we show the performance
of estimation errors for parameter θ with SNR levels from 0-30 dB.
The proposed reconstruction scheme can achieve better estimation
accuracy by treating the step-edge as a 2D FRI signal. It is precise
under an SNR level as low as 4 dB. Meanwhile, the SNR levels that
required for the other approaches to be accurate are much higher,
i.e., 15 dB for Baboulaz’s approach and 13 dB for Hirabayashi’s ap-
proach. Baboulaz’s approach is not able to estimate the step-edge
parameters precisely due to the polynomial growth rate of B-spline
coefficients [5]. Hirabayashi’s approach obtains better estimation ac-
curacy in the moderate noise condition by employing a trigonometric
E-spline sampling kernel. For the high SNR scenario, we also obtain
a significant improvement in the estimation accuracy. The standard
deviations for θ under SNR level of 30 dB are 1.8×10−4 for the pro-
posed technique, while 10.5× 10−4 and 5.0× 10−4 for Baboulaz’s
method and Hirabayashi’s method, respectively. In Fig. 2 (b), a sim-
ilar result for the estimation errors for γ under different SNR levels
are observed. The proposed approach outperforms the row by row
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(a) (b) (c) (d) (e) (f)

Fig. 3: Comparison of step-edge extraction performances on a real image block. (a) A real step-edge of size 256× 256 pixels, (b) the Hough
transform, (c) Popovici’s method [8], (d) Baboulaz’s method [4], (e) Hirabayashi’s method [5], (f) the proposed method.

reconstruction schemes in the estimation accuracy under SNR lev-
els from 4-30 dB. Although Hirabayashi’s approach shows a better
performance under SNR level of 4 dB, the standard deviation of es-
timation errors are above 100 pixels in a rather small size 512× 512
image.

4.2. Experimental Results on Real Step-Edges

In this section, the case of step-edge extraction on a real image is
considered. The image is cropped out from a real image that is cap-
tured by a Canon EoS 450D DSLR with settings of 1/60s, F5.6, and
ISO 800 (see Fig. 3(a)). Thus, the image includes different types of
noise from the acquisition process [10].

The traditional Hough transform [7] estimates the step-edge pa-
rameters based on the Canny edge detector and followed by a voting
procedure. It produces multiple lines for a blurred step-edge due to
the presence of several nearby Hough-space peaks [11]. Here, we
select the peak with the highest response. However, the performance
of the Hough transform is still degraded by the inaccurate edge po-
sitions due to the presence of noise as shown in Fig. 3 (b). For
Popovici’s method [8], the step-edge parameter estimation is done
on a block by block basis for the whole image without locating the
region of interest. The block size is selected experimentally as 8× 8
pixels. With other parameters set to default, the reconstructed step-
edge in Fig. 3 (c) is discontinuous and contains spurious responses.

For Baboulaz’s and Hirabayashi’s approaches, due to large vari-
ation of the estimation parameters in each row, no edge points can
be merged by the similarity measure [4]. Here, the step-edges are
obtained by averaging the parameters from all edge points. As
shown in Fig. 3 (d) and (e), the extracted results by Baboulaz’s and
Hirabayashi’s approaches deviate from the real orientation.

For the proposed approach, a B-spline kernel of order 7 as given
in [4] is used to simulate the sampling kernel in the camera. A more
precise and systematic calibration of the real sampling kernel is to
be done. The proposed 2D FRI principle considers all samples from
the image at a time. It is shown in Fig. 3 (f) that the edge orientation
and location can be retrieved precisely without any postprocessing
even with noisy step-edge image.

5. CONCLUSION

In this paper, an approach for extracting step-edge parameters using
the 2D FRI principle which treats the images block by block is pro-
posed. Experimental results on both synthetic and real step-edge im-
ages show that the proposed approach outperforms existing methods
with the 1D FRI principle which treats the images row by row under
SNR levels higher than 4 dB. The step-edge extraction method has
found its application in local feature extraction for super-resolution

technique. With the improvement in the accuracy of step-edge ex-
traction, better performance in the image super-resolution task can
be expected. A more detailed version of the paper has been submit-
ted for review [12].
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