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ABSTRACT

The aim of the present contribution is to extend the algorithm
introduced in the paper S. Fiori and T. Tanaka, “An algorithm
to compute averages on matrix Lie groups,” IEEE Transac-
tions on Signal Processing, Vol. 57, No. 12, pp. 4734 –
4743, December 2009, to compute averages over the Stiefel
manifold. The idea underlying the developed algorithms is
that points on the Stiefel manifold are mapped onto a tangent
space, where the average is taken, and then the average point
on the tangent space is projected back to the Stiefel manifold.
Based on this idea, a fixed-point algorithm is developed, and
numerical examples are shown to support the analysis.

Index Terms— Matrix manifolds, Averaging on matrix
manifolds, Manifold retraction, QR-decomposition.

1. INTRODUCTION

Representations involving structured matrices, such as or-
thogonal, symmetric and unitary matrices, arise frequently
in signal processing. Well-known examples are Principal
Component Analysis (PCA) and Independent Component
Analysis (ICA) by signal pre-whitening [3]. Moreover, in
statistical data processing, the data may appear under the
form of random structured matrices (see, e.g., [4]). Random
matrix theory is an important and active research area and
it finds applications in wireless communication, compressed
sensing and information theory. For example, in the last
decades, a considerable amount of work has emerged in in-
formation theory on the fundamental limits of communication
channels that makes use of results in random matrix theory
[8]. A useful statistical characterization of a set of structured
data-matrices is their empirical mean, which appears as an
average matrix carrying on the same structure of the data
themselves. Averaging over a data-set is a good method to
smooth-out data and to alleviate measurement errors.
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In case of unconstrained data, such as, for example, in
the case that the matrix-type data belong to the flat space
R

n×n, simple arithmetic averaging produces the desired re-
sult. However, in the case that constraints – such as orthog-
onality – are to be taken into account, arithmetic averaging
does not produce a consistent result (this is due to the fact
that, for example, the entry-by-entry addition of two orthog-
onal matrices is not orthogonal, in general). Therefore, to
compute averages of structured matrices, it is necessary to
build-up an averaging algorithm that takes into account the
geometric features of the (generally curved) space that those
matrices belong to.

Fiori and Tanaka [5] presented a general-purpose averag-
ing algorithm that works for Lie groups and, in particular,
for the space of special orthogonal matrices, that are square
matrices with mutually orthogonal unitary-norm columns and
such that their determinant is positive (namely, they represent
high-dimensional rotations). A Lie group G is an algebraic
group with a manifold structure compatible with the algebraic
structure. The algebraic structure is made of a set equipped
with the general structure of the algebraic groups (namely, a
multiplication operation, an inversion operation and an iden-
tity element). The differential-geometric structure manifests
itself through the Lie algebra g, which is a vector space given
by the tangent space to the manifold at the identity of the
group. The method presented in [5] exploits the relationship
between a Lie group and its associate Lie algebra and can be
described as follows, with reference to Figure 1:

• The first step is to perform a left-translation �x of each
sample xk ∈ G to a neighbourhood of the identity ele-
ment e of the Lie group.

• The next step is to map all samples onto the Lie algebra
g, via a function P−1

e , and to compute their arithmetic
mean denoted by u.

• The final step consists into mapping the Lie-algebra el-
ement u onto G by a function Pe and into getting the
mean element x by the inverse left-translation �−1

x .

Although there is a connection between the method proposed
in [5] and the notion of Riemannian mean or Karcher mean
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Fig. 1. Illustration of the averaging algorithm on the Lie
group G proposed in [5]. The dots (•) denote sample ma-
trices and the box symbol (�) denotes the empirical average
matrix.

[6], the substantial difference is that the Riemannian mean is
defined on the basis of a least-mean dispersion criterion that
involves the Riemannian (or geodesic) distance between two
points, while the method proposed in [5] does not involve any
metrics and is hence more general, in this regard.

Averaging on non-Lie-group-type manifolds is a sub-
stantially more involved problem. It could be tackled as a
Riemannian-mean or Karcher-mean computation problem,
but in some cases a distance function on manifolds of interest
may be unavailable in closed form. In particular, there appear
to be no reports about the problem of averaging on the Stiefel
manifold (the space of orthogonal rectangular ‘tall-skinny’
matrices), which is not a Lie group, although a number of
signal-processing applications requires statistical computa-
tion over the Stiefel manifold, such as data clustering [2],
image and video-based recognition [9] as well as Bayesian
filtering [7].

The aim of the present paper is to extend the algorithm in-
troduced in the paper [5] to compute averages over the com-
pact Stiefel manifold. The idea behind the developed algo-
rithms is that points on the Stiefel manifold are mapped onto a
tangent space, where the average over mapped points is taken,
and then the average point on the tangent space is projected
back to the Stiefel manifold. Most of the effort concerns the
individuation of an appropriate retraction map for the Stiefel
manifold and in the computation of its inverse.

2. AN AVERAGING ALGORITHM ON THE
COMPACT STIEFEL MANIFOLD

The compact Stiefel manifold defined by:

St(p, n)
def
= {X ∈ R

p×n|XTX = In}, (1)

where In is a n × n identity matrix and n < p, namely, the
manifold St(p, n) is the space of the ‘tall-skinny’ orthogonal
matrices. Its tangent space at a pointX ∈ St(p, n)may be ex-
pressed as TXSt(p, n) =

{
V ∈ R

p×n|XTV + V TX = 0
}
.

A retraction map at a point X ∈ St(p, n) is a map PX :
TXSt(p, n) → St(p, n). An inverse map of a retraction is
termed lifting map and is denoted by P−1

X : St(p, n) →
TXSt(p, n). An inverse retraction is defined only locally,
in general. Note that the inverse of a retraction map is not
unique, in general. In this section, an averaging method on the
Stiefel manifold based on the notion of retraction is presented.
In particular, the proposed method is based on a fixed-point
algorithm.

2.1. A retraction map and its associated lifting map on
the compact Stiefel manifold

In [1], it is shown that one of the retractions PX that map a
point of TXSt(p, n) onto St(p, n) is given by:

PX(V )
def
=qf(X + V ) (2)

where the quantity qf(X + V ) denotes the Q-factor of the
thin QR decomposition of the matrix X + V ∈ R

p×n and
the R-factor is a upper-triangular matrix with strictly positive
elements on its main diagonal, so that the decomposition is
unique. The lifting map P−1

X can be represented by:

P−1
X (Q) = QR−X, (3)

where X,Q ∈ St(p, n) are given and R is an upper-triangular
matrix with strictly positive elements on its main diagonal.
Given matrices X,Q ∈ St(p, n) if there exists an upper-
triangular matrix with strictly positive elements on its main
diagonal R such that QR−X ∈ TXSt(p, n), then the lifting
map (3) exists. The matrix R must satisfy the condition:

XT (QR −X) + (QR−X)TX = 0. (4)

Namely, the matrix R may be calculated by solving the linear
system of n(n+1)

2 equations (XTQ)R+RT (XTQ)T = 2In.

2.2. A fixed-point averaging algorithm on the compact
Stiefel manifold

Denote the sample matrices to average asXk ∈ St(p, n), with
k ∈ {1, . . . , N}, and assume that the samples Xk are dis-
tributed in a neighbourhood of a center of mass C ∈ St(p, n).
The following considerations lead to an equation characteriz-
ing the empirical mean matrix:

• The first step is to map the points Xk ∈ St(p, n) in
a neighbourhood of the sought-for mean-matrix X ∈
St(p, n) onto TXSt(p, n) by a lifting map. Such points

are denoted as Vk
def
=XkRk −X .
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Fig. 2. Getting an average matrix by utilizing a Stiefel-
manifold retraction. The dots (•) denote sample matrices
and the box symbol (�) denotes their empirical mean-Stiefel-
matrix.

• The second step is to compute the mean vector V =
N−1

∑N

k=1 Vk, according to an arithmetic-average
rule.

• The last step is to bring back the mean vector V to
St(p, n) by the retraction map and to get a mean ma-
trix X = qf(X + V ).

Such a procedure is illustrated in Figure 2. Summarizing the
above procedure, a mean matrix X ∈ St(p, n) is the solution
of the matrix-type equation:

X = qf

(
X +

1

N

N∑
k=1

(
XkRk −X

))
(5)

in the variable X . (Note that the matrices Rk depend on the
matrix X via the condition XkRk − X ∈ TXSt(p, n).) In
general, however, the equation (5) cannot be solved in closed
form. It may be solved by means of a fixed-point iteration
algorithm, that generates a sequence X(i) ∈ St(p, n) of esti-
mates converging to the sought-for empirical mean matrix X ,
and that may be written as:

X(i+1) = qf

(
1

N

N∑
k=1

XkRk(X
(i))

)
, i ≥ 0, (6)

where the matrix X(0) ∈ St(p, n) denotes an initial guess
and the notationRk(X

(i)) emphasizes the fact that the upper-
triangular matrix Rk depends on the current estimate X(i) via
the condition (4).

3. NUMERICAL RESULTS

The first experiment refers to the case of averaging over
the manifold St(4, 3). In such an experiment, three dif-
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Fig. 3. Results of averaging over the manifold St(4, 3). The
three curves refer to three different values of the sample-set
cardinality.

ferent sets of samples of different cardinality N were gen-
erated. The data-sets were generated around a common
center of mass C ∈ St(4, 3) and the averaging algorithm
(6) is always initialized to the same point X(0). The data-
sets count N = 10, N = 50 and N = 200 samples, re-
spectively. In the following, the measure of discrepancy
δ : St(p, n) × St(p, n) → R

+
0 between two Stiefel-manifold

matrices, defined as δ(X,Y )
def
= ‖In −XTY ‖F, where ‖ · ‖F

denotes Frobenius norm, is made use of. The obtained curves,
in term of discrepancy δ(C,X(n)), are shown in the Figure 3.
The figure shows that the algorithm converges steadily and
in a few iterations and, as the available information becomes
richer, the accuracy of the estimate improves.

The second set of experimental results concerns the prob-
lem of averaging over the manifolds St(4, 3), St(30, 3),
St(20, 5) and St(20, 8) by keeping fixed the cardinality of the
data-set. The Figure 4 illustrates the obtained results, again in
terms of discrepancy δ(C,X(n)), which show that by keep-
ing p fixed and increasing n, the convergence becomes more
difficult, and the same happens when n is kept fixed and p in-
creases. Yet the developed algorithm can cope with relatively
large-size problems.

The third experimental result refers to the case of aver-
aging real-world samples over the manifold St(5, 3). The
N = 50 samples Xk ∈ St(5, 3) to average were obtained
by running a fastICA algorithm [3], which separates out 3 in-
dependent source signals from 5 mixtures, on 50 independent
trials on the same separation problem. The Figure 5 illustrates
the obtained results, expressed in terms of separation perfor-
mance index (PI) [3]. The figure shows that the value of the PI
corresponding to the empirical average matrix X ∈ St(5, 3)
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Fig. 4. Results of averaging over four manifolds St(p, n) of
different sizes.

collocates in an average position with respect to the PI values
of the single patterns Xk ∈ St(5, 3).

4. CONCLUSIONS

The present paper extends the algorithm introduced in [5] to
compute averages over Lie groups to the Stiefel manifold.
The present method inherits the main advantage of the pre-
vious method, namely, it does not involve any metrics and is
hence more general than the Riemannian mean method. The
numerical results show that the algorithm converges steadily
and in a few iterations and can cope with relatively large-size
problems.

A thorough analysis of the possible retraction/lifting pairs
that may be associated to the Stiefel manifold, along with
their numerical implementation features, is being conducted
and will be presented in a forthcoming longer report.
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