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ABSTRACT

We propose a novel gap-filling technique, based on the em-
pirical mode decomposition (EMD). The idea is that a signal
with missing data can be decomposed into a set of intrinsic
mode functions (IMFs) with missing data. Filling the gaps in
each IMF should be easier than filling the gaps in the original
signal. This is because each IMF varies much more slowly
than the original signal, and also because the IMFs are known
to have useful regularity properties. We demonstrate the per-
formance of our technique on environmental pollutant data.

Index Terms— Signal reconstruction, signal restoration,
interpolation, signal processing algorithms

1. INTRODUCTION

Many real-world signals often contain multiple gaps which
reflect missing data. On the other hand, most of the standard
signal processing tools are only applicable to signals with-
out gaps; for instance, this is true of spectral analysis. Thus
the problem of gap-filling (or “interpolating”) is fundamental.
There is a sizable literature on this problem; a survey can be
found in [1]. The existing gap-filling techniques make techni-
cal assumptions which limit their applicability. For instance,
the Papoulis–Gerchberg algorithm [2] assumes that the signal
is stationary, band-limited and the bandwidth is known. The
goal of this paper is to develop a gap-filling technique which
makes minimal technical assumptions. The technique we pro-
pose is called empirical mode decomposition gap-filling. As
its name suggests, our technique is fundamentally based on
the empirical mode decomposition, or EMD. Recall [3] that
the EMD decomposes a signal into a finite superposition of os-
cillatory modes. The method is model-free, fully data-driven,
and more importantly does not impose any technical assump-
tions. In particular, this means that the EMD is well-suited to
the analysis of non-stationary and non-linear signals.

The paper is organized as follows. After briefly reviewing
the EMD in §2, we describe EMD gap-filling in §3. The per-
formance of EMD gap-filling on a real-world data is demon-
strated in §4.

2. THE EMPIRICAL MODE DECOMPOSITION

The empirical mode decomposition (EMD) is an algorithm
which decomposes a real-valued signal into a finite additive
superposition of oscillatory components [3]. Each oscillatory
component is called an intrinsic mode function (IMF). The
EMD does not rely on any technical assumptions concern-
ing the nature of the signal. The IMFs are computed subject
to two requirements: First, the number of local extrema and
number of zero crossings of each IMF should vary by at most
one. Second, the mean of the upper and lower envelopes of
each IMF should be approximately equal to zero. The IMFs
are computed by means of the so-called “sifting process.” The
sifting process stops when the two requirements are satisfied
within a prescribed tolerance [3].

Consider a discrete-time signal X = (X1, X2, . . . , XN ).
The EMD computes the IMFs of X using the following algo-
rithm. As an initialization step, set i = 1 and ρ0 = X .

1. SIFTING PROCESS

(a) Identify the local maxima and local minima of ρi−1. For
example, Xt is a local maximum if Xt−1 ≤ Xt and
Xt+1 ≤ Xt.

(b) Use the local maxima and local minima obtained in (1a)
to compute the upper and lower envelopes of ρi−1. This
requires an interpolation method, for which we use cubic
splines.

(c) Set Qi to be the mean of the upper and lower envelopes
of ρi−1, and set h = X − Qi.

(d) If h is not an IMF, in the sense that it does not satisfy the
two requirements described above within the prescribed
tolerance, then go to (1a) with ρi−1 = h. If h is an IMF,
then go to (2a).

2. IMF EXTRACTION

(a) The ith intrinsic mode function of X is A
i = h, and the

ith residual is ρi = X − A
i. Increment i and go to (1a).

The algorithm halts when the local maxima and local minima
of the ith residual cannot be identified. It is known that this
algorithm halts in a reasonably small number of steps. We
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denote by I the largest index for which A
i is defined. Then

the EMD of X is

X =

I∑
i=1

A
i + ρI .

In this decomposition, A
1 through A

I can be thought of
as containing a “spectrum” of local oscillations in X , with
the highest-frequency oscillations represented in A

1 and the
lowest-frequency oscillations represented in A

I .

3. EMD GAP-FILLING

In this section, X is given as in §2. Consider

X̃ = (X1, . . . , Xq−1, Xq+Q, . . . , XN ),

which we regard as X with a single gap. We assume q � 1
and q + Q− 1 � N , so that there is information available on
both sides of the gap. Our problem is to fill the gap in X̃ ; that
is, to estimate (Xq, Xq+1, . . . Xq+Q−1).

3.1. Modified EMD

In this section we describe how to modify the EMD to extract
IMFs from X̃ . This is needed for the following reasons: First,
the fact that Xq and Xq+Q−1 are missing means that Xq−1

and Xq+Q cannot be deemed as local extrema. Consequently
Xq−1 and Xq+Q go unused. Second, the interpolation step
of the sifting process suffers from overshoot near the gap. It
turns out that the overshoot can be mitigated by adding “ar-
tificial local extrema” based on the information contained in
Xq−1 and Xq+Q. The modified EMD computes the IMFs of
X̃ using the following algorithm. As an initialization step, set
i = 1, ρ0 = X̃ , and k = 1.

1. SIFTING PROCESS

(a) Identify the local maxima and local minima of ρi−1. Let
A and B be the total numbers of local minima and local
maxima, respectively. Let A� and B� be the numbers of
local minima and maxima, respectively, on the left side
of the gap. Denote the local minima on the left and right
side of the gap and local maxima on the left and right side
of the gap by respectively

M�
min = (Xt1 , Xt2 , . . . , Xt

A�
),

Mr
min = (Xt

A�+1
, Xt

A�+2
, . . . , Xt

A�+C
),

M�
max = (Xτ1

, Xτ2
, . . . , Xτ

B�
), and

Mr
max = (Xτ

B�+1
, Xτ

B�+2
, . . . , Xτ

B�+D
).

Let m1 and M1 be min(X1, Xt1) and max(X1, Xτ1
)

at time index 1, mq−1 and Mq−1 be min(Xq−1, Xt
A�

)
and max(Xq−1, Xτ

B�
) at time index q − 1, mq+Q and

Mq+Q be min(Xq+Q, Xt
A�+1

) and max(Xq+Q, Xτ
B�+1

)
at time index q + Q, and finally mN and MN be

min(XN , Xt
A�+C

) and max(XN , Xτ
B�+D

) at time in-
dex N . We now redefine

M�
min = (m1,M

�
min,mq−1),

Mr
min = (mq+Q,Mr

min,mN ),

M�
max = (M1,M

�
max,Mq−1),

Mr
max = (Mq+Q,Mr

max,MN ).

(b) Use the new local extrema obtained above together with
their associated time indices to compute the upper and
lower envelopes of ρi−1.

(c) Set Qi to be the mean of the upper and lower envelopes
of ρi−1 at time indices 1 ≤ t ≤ q−1 and q+Q ≤ t ≤ N ,
and set h = X̃ − Qi.

(d) Due to the gap in h, we cannot determine whether or not
h is an IMF. We therefore make the convention that if
k ≤ 100/i, then we increment k and go to (1a) with
ρi−1 = h. If k > 100/i, then set k = 1 and go to (2a).

2. IMF EXTRACTION

(a) The ith IMF of X̃ is A
i = h, and the ith residual is

ρi = X̃ − A
i. Increment i and go to (1a).

In the modified EMD, there are two stopping criteria: Do not
allow i to exceed 10; For i < 10 we only deem h to be an IMF
if it has at least one local minimum and one local maximum
on each side of the gap. Otherwise, stop the algorithm.

3.2. Identifying local extrema and their indices in the gap

The modified EMD produces IMFs with gaps. In this section
we describe how to estimate the total number of local extrema
appearing in the gap of each IMF. We then describe how to
estimate the indices of the local extrema.

The indices of the local minimum and local maximum
nearest to the left side (resp. right side) of the gap are tA�

and τB� (resp. tA�+1 and τB�+1). Assuming that every two
consecutive minimum and maximum are connected by a line,
we use the equation of this line to define the “index of the zero
crossing” as the a real number at which the line crosses zero.
We denote the indices of the zero crossing nearest to the left
and right side of the gap by κz� and κzr respectively. Let I
be an empty vector. Use the following algorithm:

• Let I1 = max(tA� , τB� , κz�) and I = [I, I1];

• If I1 = κz� then I2 = max(tA� , τB�) and I = [I, I2];

• Let I3 = min(tA�+1, τB�+1, κzr ) and I = [I, I3];

• If I3 = κzr then I4 = min(tA�+1, τB�+1) and I = [I, I4].

Depending on whether the closest indices to the left and right
side of the gap are associated with minima, maxima or zero
crossings, we can come up with 16 different vector I . These
are reported in the first column of Table 1.

Recalling the properties of IMFs such as being zero-mean
and mutually orthogonal, we immediately know that every

3822



I A′ B′ T ′

[t
A� , t

A�+1
], [t

A� , κzr , t
A�+1

], h h+1 2h+1
[t

A� , κ
z� , κzr , t

A�+1
], [t

A� , κ
z� , t

A�+1
]

[t
A� , τ

B�+1
], [t

A� , κzr , τ
B�+1

], h h 2h
[τ

B� , κ
z� , τ

B�+1
], [t

A� , κ
z� , τ

B�+1
],

[τ
B� , κzr , t

A�+1
], [τ

B� , t
A�+1

]

[τ
B� , τ

B�+1
], [τ

B� , κ
z� , κzr , τ

B�+1
], h+1 h 2h+1

[τ
B� , κzr , τ

B�+1
], [τ

B� , κ
z� , τ

B�+1
]

[τ
B� , κ

z� , κzr , t
A�+1

], h+1 h+1 2h+2
[t

A� , κ
z� , κzr , τ

B�+1
]

Table 1. 16 possibilities for I together with the expected num-
ber of minima denoted A′ (resp. maxima denoted B′) in the
gap with respect to a non-negative integer h. Also we have
the total number of extrema in the gap denoted T ′ = A′ + B′.

minimum or maximum should be surrounded by zero cross-
ings and that the order in which a minimum or maximum oc-
curs alternates. For example, for the first case reported in
Table 1, we have minima on both sides of the gap. In the sim-
plest case, the minimum on the left should be followed by a
zero-crossing, maximum, and zero-crossing. The next possi-
ble case is that the minimum on the left is followed by a zero-
crossing, maximum, zero-crossing, minimum, zero-crossing,
maximum, and zero-crossing. For the first possibility, we
have one maximum in the gap and no minimum. For the sec-
ond possibility, we have two maxima and one minimum in the
gap. This can go on depending on how many extrema we can
fit inside the gap. We therefore use a non-negative integer h
to represent the total number of extrema in the gap. For the
example given above, if the total number of minima is repre-
sented by h and the total number of maxima by h + 1, then
the first possibility can be described by h = 0 and the second
one by h = 1. This approach is used for all cases in Table 1.
The question is how to estimate h.

In order to estimate h we first make a few assumptions.
1) The behaviour of the missing data is similar to the neigh-
bourhood of the gap. 2) For each IMF, every two consecutive
extrema in the gap are equally distant.

We now use the following algorithm to estimate h:

• Compute dl = |tA� − τB� | and dr = |tA�+1 − τB�+1|;

• Compute d̄ = min(dl, dr);

• Compute Dl = q − max(tA� , τB�) and
Dr = min(tA�+1, τB�+1) − (q + Q − 1);

• Select 0 ≤ P l ≤ 1 and 0 ≤ P r ≤ 1 and then compute
J l = q − �P l × Dl� and Jr = q + Q − 1 + �P r × Dr�;

• Compute �Jr − J l/d̄� − 1 as the estimated number of ex-
trema in the gap. This is an estimate for T ′ in Table 1;

• Use the h-dependent expression for T ′ from Table 1 to ob-
tain an estimate for h.

We have now completed the first goal in this subsection.
In order to obtain the second goal in this subsection we

proceed as follows.

• Using the estimated h, we first use the h-dependent expres-
sions in Table 1 to estimate the total number of minima A′

and the total number of maxima B′ in the gap.

• Compute the increment ΔT = �Jr − J l/d̄�.

• Compute the indices J l + kΔT where 1 ≤ k ≤ T̂ ′.

• Using the knowledge of the estimated A′ and B′, we de-
termine the type of extrema that associates with the above
indices.

Remarks: The percentage points P l and P r must be selected
for each IMF. For example, if we have five IMFs, we must
select ten percentage points. We select these points manually
based on the appearance of each gap-filled IMF. This is not
illogical but can be time-consuming.

3.3. Final Gap-filling

The goal in this subsection is to describe the final stage of the
EMD gap-filling.

For each IMF, compute the upper and lower envelopes fol-
lowing what we described in the modified EMD. We then as-
sign a point on the upper envelope (resp. lower envelope) at
every estimated maxima indices (resp. minima indices) in the
gap. We use all the extrema in the gap which we located on
the envelopes and use spline interpolation to interpolate the
missing data in the gap.

Since the residual term does not contain enough oscilla-
tions (in the sense that we do not have two extrema on each
side of the gap), we only use a simple spline in order to fill
out the gap in the residual. We finally sum all the gap-filled
IMFs to reconstruct the signal in the gap.

Remark: For simplicity, we have assumed one gap in the
signal. It is often the case that we have multiple number of
gaps. The method described above can be used for multiple
gaps. The only necessary step is to break down the signal with
multiple gaps into a few sub-signals each of which contains
one of the gaps. The size of the sub-signal is selected so that
we obtain on average 5 to 6 IMFs for each sub-signal.

4. EXAMPLE

In this section, we provide an example in order to demon-
strate the performance of the EMD gap-filling. This ex-
ample uses the Nitrogen dioxide (NO2) pollutant signal
from 1990 in Toronto, Canada taken from http://www.etc-
cte.ec.gc.ca/napsdata/Default.aspx. We denote this signal
by X . We then construct X̃ by inserting three synthetic
gaps into X at base times 80, 166, and 310 and lengths 10,
30, and 16 respectively. Fig. 1 displays X and X̃ . In or-
der to extract the IMFs from X̃ , we construct three signals
such that X̃ 1 = X̃ (30 : 140), X̃ 2 = X̃ (106 : 255), and
X̃ 3 = X̃ (280 : 365). Applying the modified EMD described
in subsection 3.1, we obtained 6 IMFs for X̃ 1, 6 IMFs for X̃ 2

and finally 5 IMFs for X̃ 3. As an example, Fig. 2 displays all
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Fig. 1. Top: NO2 pollutant data from 1990 in Toronto. Bot-
tom: NO2 pollutant data with three inserted gaps.

the IMFs extracted for X̃ 1. We now use the EMD gap-filling
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Fig. 2. 6 IMFs extracted from X̃ 1.

to interpolate the missing data in X̃ 1, X̃ 2, and X̃ 3 indepen-
dently. The P l selected for X̃ 1, X̃ 2, and X̃ 3 are respec-
tively [1, 0.9, 0.8, 0.5, 0], [0.8, 1, 1, 1, 0.5], and [0.8, 0.8, 1, 1]

and the P r selected for X̃ 1,X̃ 2, and X̃ 3 are respectively
[0.5, 1, 0.9, 0.8, 0], [1, 0.5, 0, 1, 0.5], and [0.8, 0.5, 0, 0]. An
example of EMD gap-filling is shown in Fig. 4 for the IMFs
extracted from X̃ 1. The gap-filled IMFs for each X̃ 1,X̃ 2, and
X̃ 3 are now summed in order to gap-fill X̃ . Fig. 4 displays
the gap-filled X̃ in comparison with X using small regions
around each gap. In order to evaluate the performance of the
EMD gap-filling, we compare it with 4 other interpolation
techniques such as linear , Wiener [4], Papoulis–Gerchberg
[2], and singular spectral analysis [5] with window length
100. To do so, we compute the multi-taper spectrum estimate
[6] of X and the gap-filled X̃ using all 5 techniques. We then
compute the log-Euclidean distance between the estimated
spectrum of X and the estimated spectra of the gap-filled X̃

(see Table 2). The results indicates that the EMD gap-filling
outperforms the other 4 interpolation techniques.
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Fig. 3. Gap-filled IMFs for X̃ 1 using EMD gap-filling.
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