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ABSTRACT
This paper presents a relaxation of an assumption usually im-

posed in the recovery of sparse vectors with random support

in pairs of orthonormal bases or incoherent dictionaries by

basis pursuit. The assumption requires the phases of the en-

tries of the sparse vector to be chosen randomly in [0, 2π).
This paper provides probabilistic recovery guarantees for de-

terministic phases. We prove that, if a phase pattern is fixed,

then a sparse vector with random support and corresponding

phases can be recovered with high probability. As a result,

the phases can take any distribution and can be dependent, as

long as they are independent of the support. Furthermore, this

improvement does not come at the expense of the maximum

recoverable sparsity.

Index Terms— uncertainty principle, basis pursuit, spar-

sity, duality in optimization, incoherent dictionary

1. INTRODUCTION
In recent years, sparse representation problems have received

extensive attention, where we aim to find the sparse signal

x that underlies the, possibly underdetermined, observations

y = Φx. One popular way of recovering x is the following

�1-minimization program.

min ‖x̃‖1 subject to y = Φx̃ (P1)

The program (P1) is called basis pursuit ([1]) and it is well

known that certain conditions can provably guarantee that the

output of (P1) is equal to x ([2]).
This work will be concerned with the problem where Φ ∈

R
d×N is an overcomplete dictionary, i.e. a deterministic ma-

trix whose columns have unit �2 norm, N > d and the inner

products between any two distinct columns are bounded by

the coherence μ.
Background: The program (P1) was first proposed in a

seminal work by Chen et al. ([1]) and was analyzed in [3].

This work was supported in part by the National Science Foundation un-

der grants CCF-0729203, CNS-0932428 and CCF-1018927., by the Office of

Naval Research under the MURI grant N00014-08-1-0747, and by Caltech’s

Lee Center for Advanced Networking. This work was performed while the

first author was an exchange student at the California Institute of Technol-

ogy, supported by Professor Charles K. Kao Research Exchange Scholarship

of The Chinese University of Hong Kong.

Sharp deterministic guarantees are provided in [3], in particu-

lar, when Φ is the concatenation of identity and DFT matrices

of size d, (P1) can recover any underlying signal x with spar-

sity at most 1
2

√
d from underdetermined observations.

A more recent work by Candès and Romberg [4] showed

that, by introducing randomness in the support and phases

of the nonzero components of the signal, (P1) can tolerate

significantly more nonzero entries for the same dictionary, as

much as O( d
log(d) ). Basically this means, (P1) works for most

“not-so-sparse” signals and we’ll call this the “robust sparsity

threshold (RST)”. The paper [5] yields results comparable to

[4]; however its results apply to general dictionaries rather

than only pairs of orthonormal matrices.
Contributions: Works related to RST ([6, 7, 8]) gener-

ally assumes uniformly i.i.d. random phase for nonzero en-

tries and uniformly random support for the underlying signal.

In this paper, it is shown that the assumption on the phases can

be relaxed with no additional cost at all. Our results require,

orderwise, the same amount of maximum tolerable sparsity

as in [5] which provides the best available results.
In our model, we first fix an arbitrary phase pattern β ∈

C
N , |βi| = 1 for i = 1, ..., N and choose the support T of the

signal uniformly at random from {1, ..., N} and then use the

elements of β that corresponds to T as phases of the nonzero

entries. In Theorem 6.1, we prove that, for a general dictio-

nary, if x is sufficiently sparse and obeys this model, it can be

recovered via (P1) with high probability (w.h.p.). In Theorem

6.2, we study the case of a pair of orthonormal basis. It is

shown that, if the support on the first basis is fixed arbitrarily

and the phases are uniformly i.i.d., while the support on the

second basis is random and the phases are chosen in the same

way (from β), (P1) will recover the sparse signal x w.h.p.
Our results are based on a simple but novel dual certificat-

ing method that guarantees success of (P1). We compensate

for the loss of random phases by introducing an additional

random support during the dual vector construction.

2. BACKGROUND AND NOTATION

It is always assumed Φ ∈ C
d×N . The spectral norm is de-

noted by ‖ · ‖2. Let T ⊆ {1, 2, . . . , N}. ΦT denotes the
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matrix obtained from Φ by selecting only the columns in T .

Similarly, the vector xT is obtained by selecting the entries

of x ∈ C
N in T . The selection of columns or entries is ap-

plied before transposition or inversion (i.e. Φ∗
T = (ΦT )

∗
).

Denote the support (set of non-zero positions) of a vector x
by supp(x). For any scalar x ∈ C, let sgn(x) = x/|x| when

x �= 0 and sgn(x) = 0 when x = 0.

Definition 2.1. A dictionary is a matrix Φ ∈ C
d×N in which

columns have unit �2 norm. The coherence of a dictionary
Φ = [ϕ1, ...,ϕN ] is defined as

μ = max
i �=j

∣∣〈ϕi,ϕj

〉∣∣ . (1)

In particular, we may construct a dictionary Φ = [Φ1 Φ2]
by a pair of orthonormal bases Φ1 and Φ2. Obviously, (P1)

is interesting when N > d, i.e. when y = Φx is underdeter-

mined.

3. PREVIOUS WORK

This section presents a comparison between results of [5] and

this work. The following theorem is a result of Theorem B

and Theorem 14 of [5].

Theorem 3.1 (Tropp). Let Φ ∈ C
d×N be a dictionary with

coherence μ and s ≥ 1. If√
μ2m · s logN +

m

N
‖Φ‖22 ≤ C,

where C > 0 is a constant, then with probability 1−N−s, a
vector x ∈ C

N with supp(x) of size m randomly chosen in
{1, ..., N} and sgn(xi) i.i.d. uniform on the unit circle, is the
unique solution of (P1) with y = Φx.

Compared to this result, Theorem 6.1 relaxes the random

phase assumption, while keeping the condition on sparsity the

same (except for a smaller C).

The following theorem is a result of Theorem D and The-

orem 14 of [5].

Theorem 3.2 (Tropp). Let Φ ∈ C
d×2d be a pair of orthonor-

mal bases with coherence μ and s ≥ 1. Assume

μ2(m1 +m2)s log d ≤ C,

where C > 0 is a constant. Then with probability 1 − d−s,
a vector x = [vT

1 vT
2 ]

T , where v1,v2 ∈ C
d, with supp(v1)

of size m1 arbitrary in {1, ..., d} and supp(v2) of size m2

randomly chosen in {1, ..., d}, and sgn(xi) i.i.d. uniform on
the unit circle, is the unique solution of (P1) with y = Φx.

Compared to this result, Theorem 6.2 relaxes the random

phase assumption on the second basis, while keeping the con-

dition on sparsity the same (except for a smaller C).

Next, we state Theorem B of [5], which will be useful in

the proof of Theorem 6.1.

Theorem 3.3 (Tropp). Let Φ ∈ C
d×N be a dictionary with

coherence μ, and let T be a random subset of {1, ..., N} with
size m. Let s ≥ 1. If√

μ2m log(m+ 1) · s+ m

N
‖Φ‖22 ≤ cδ,

where c > 0 is a constant, then we have

P {‖Φ∗
TΦT − I‖2 ≥ δ} ≤ m−s.

4. CONCENTRATION INEQUALITIES

The following inequality can be obtained by applying the

classical Hoeffding inequality [9] on the real and imaginary

parts of {Xi}Ni=1 and then using a union bound.

Lemma 4.1 (Complex Hoeffding Inequality). Let a ∈ R
N .

Let X1, ..., XN be independent zero-mean complex-valued
random variables with |Xi| ≤ ai almost surely. Then for
δ ≥ 0,

P

{∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ δ

}
≤ 4 · exp

(
− δ2

4 ‖a‖22

)
.

Now, we introduce a useful inequality on random subsets.

Lemma 4.2. Fix N = 3m and x ∈ C
N . Let T be a random

subset of {1, ..., N} with size m. Let c ∈ R
N with

ci =

{
1 if i ∈ T

−1/2 if i /∈ T
,

then we have

P {|〈x, c〉| ≥ δ} ≤ 16 · exp
(
− δ2

16 ‖x‖22

)
.

Proof. To avoid ambiguity between the modulus sign and

conditional probability, we write the magnitude of a scalar t
as ‖t‖. Here we use a trick similar to Lemma 18 of [5]. Let σ
be a random permutation of {1, ..., N}. Assume the first m
entries of σ correspond to the elements of T , then we have

p
def
= P

{∥∥∥∥∥
N∑
i=1

xici

∥∥∥∥∥ ≥ δ

}

= P

{∥∥∥∥∥
m∑
i=1

(
xσi

− xσi+m
/2− xσi+2m

/2
)∥∥∥∥∥ ≥ δ

}
.

Draw a random vector v ∈ {0, 1, 2, 3}N uniformly and

independent of σ. Let wi,j = 1 if vi = j and 0 otherwise.

Further, let

fσ(w) =

m∑
i=1

(
(wi,0 + wi,1)xσi − wi,2xσi+m − wi,3xσi+2m

)
.

(2)

Using the fact E[wi,j ] = 1/4, we have

p = P{‖E[fσ(w)|σ]‖ ≥ δ/2}.
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We now fix σ and consider the event ‖E[fσ(w)]‖ ≥ δ/2. We

write r(w, n) = w′ where w′
i,j = wi,(j+n) mod 4. Note that

3∑
i=0

‖fσ(r(w, i))‖ ≥
∥∥∥∥∥

3∑
i=0

fσ(r(w, i))

∥∥∥∥∥
=

∥∥∥∥∥
m∑
i=1

(wi,0 + ...+ wi,3)(2xσi
− xσi+m

− xσi+2m
)

∥∥∥∥∥
= 4 ‖E [fσ(w)]‖ ≥ 2δ.

Therefore, at least one of w, r(w, 1), r(w, 2) and r(w, 3)
will have ‖fσ (r(w, n)) ‖ ≥ δ/2. As a result, whenever σ
satisfies ‖E [fσ(w)|σ] ‖ ≥ δ/2,

P

{
‖fσ(w)‖ ≥ δ/2

∣∣∣σ} ≥ 1/4.

Taking average on σ with ‖E [fσ(w)|σ]‖ ≥ δ/2,

P

{
‖fσ(w)‖ ≥ δ/2

∣∣∣ ‖E [fσ(w)|σ]‖ ≥ δ/2
}
≥ 1/4.

Consequently, we have

p = P {‖E [fσ(w)|σ]‖ ≥ δ/2} ≤ 4 · P {‖fσ(w)‖ ≥ δ/2} .

Now, let g(n) = 1 when n = 0 or 1, g(n) = −1 otherwise.

Due to (2), we simply have

fσ(w) =

m∑
i=1

g(vi)xσi+max(0,vi−1)·m .

Let σ′
i = σi+max(0,vi−1)·m for i = 1...m. Note that if

vi is fixed, then σ′ is a random permutation of a random m-

element subset of {1, ..., N} regardless of the values of vi,
and thus σ′ is independent of vi. For any fixed σ′, as g(vi)
are i.i.d. with P {g(vi) = ±1} = 1/2, Lemma 4.1 gives

P

{∥∥∥∥∥
m∑
i=1

g(vi)xσ′
i

∥∥∥∥∥ ≥ δ/2

}
≤ 4 · exp

(
− (δ/2)2

4
∑m

i=1

∣∣xσ′
i

∣∣2
)

≤ 4 · exp
(
− δ2

16 ‖x‖22

)
.

Consequently, we obtain the desired result as

p ≤ 16 · exp
(
− δ2

16 ‖x‖22

)
.

5. �1-DUALITY

We state a condition for recovery by �1 minimization pre-

sented in [10], which generalizes [11]. See also [2].

Lemma 5.1 (�1-Duality). Let Φ ∈ C
d×N , x ∈ C

N and T =
supp(x) and assume ΦT has rank |T |. Then, if there exists a
vector h ∈ C

d which satisfies

(Φ∗h)i = sgn(xi) for all i ∈ T

|(Φ∗h)i| < 1 for all i /∈ T

then x is the unique solution of the program (P1) with y =
Φx.

We call the vector h in Lemma 5.1 a dual vector of x.

Next, we present a method to construct the dual vector.

Lemma 5.2. Let Φ ∈ C
d×N , x ∈ C

N and T = supp(x).
Let Γ be a superset of T and assume ΦΓ has rank |Γ|. If there
exists a vector v ∈ C

N satisfying

vi = sgn(xi) for all i ∈ T,

|vi| < 1 for all i ∈ Γ\T, and∣∣∣〈Φ†
Γϕi,vΓ

〉∣∣∣ < 1 for all i /∈ Γ

then Φ†∗
Γ vΓ is a dual vector of x. Here, ϕi denotes the i’th

column of Φ and Φ†
Γ = (Φ∗

ΓΦΓ)
−1

Φ∗
Γ is the Moore–Penrose

pseudoinverse.

Proof. Note that (Φ∗Φ†∗
Γ vΓ)i = vi for any i ∈ Γ. It remains

to check (Φ∗Φ†∗
Γ vΓ)i for i /∈ Γ, which is bounded by the

third assumption.

6. MAIN RESULTS

This section is dedicated to two theorems, which are the main

contributions of this paper.

Theorem 6.1. Let N ≥ 32 and Φ ∈ C
d×N be a dictionary

with coherence μ. Fix β ∈ C
N with |βi| = 1. Let T be a

random subset of {1, ..., N} with size m ≥ 2. Let s ≥ 1. If√
μ2m · s logN +

m

N
‖Φ‖22 ≤ C,

where C is a constant, then a vector x ∈ C
N with supp(x) =

T and sgn(xi) = βi is the unique solution of (P1) with y =
Φx with probability 1−N−s.

Before going into the proof, it should be noted that, if

a particular x with some support and phase pattern can be

recovered via the program (P1) , then all vectors with same

support and phase pattern can be recovered as well.

Proof of Theorem 6.1. We take C = min(c/6, 1/24), where

c is the constant in Theorem 3.3. Let Φ = [ϕ1, ...,ϕN ]. Note

that we can multiply β into each column of Φ to obtain a

new dictionary Φ2 = [β1ϕ1, ..., βNϕN ] with the same norm

and incoherence, and then we can take the signs of x to be 1.

Therefore, without loss of generality, assume βi = 1.

After picking T , we draw a random 2m-element subset

T2 from {1, ..., N}\T . The union Γ = T ∪ T2 is a random

3m subset of {1, ..., N}.
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Let s′ = s log(N)/ log(m), then√
μ2 · 3ms′ log(3m+ 1) +

3m

N
‖Φ‖22

≤ 3
(√

μ2m · s logN +
m

N
‖Φ‖22

)
≤ 3C ≤ c/2

as 3 log(m) ≥ log(3m+ 1) when m ≥ 2. Invoking Theorem

3.3 on Γ and using the fact that s′ ≥ 1, we have

P

{
‖Φ∗

ΓΦΓ − I‖2 ≥ 1

2

}
≤ (3m)−s′ ≤ 1

2
N−s. (3)

From now on, we fix Γ and assume ‖Φ∗
ΓΦΓ − I‖2 < 1/2.

Let v ∈ C
N be as follows,

vi =

⎧⎪⎨
⎪⎩
1 if i ∈ T

− 1
2 if i ∈ T2

0 otherwise

.

We want to show that (ΦΓ)
†∗vΓ is a dual vector for x

with supp(x) = T and sgn(xi) = 1 for i ∈ T . Note that

‖Φ∗
ΓΦΓ − I‖2 < 1/2 implies rank(ΦΓ) = 3m. By Lemma

5.2, it remains to show the following, with high probability∣∣∣〈Φ†
Γϕi,vΓ

〉∣∣∣ < 1 for i /∈ Γ.

Consider Φ†
Γϕi. We have

‖Φ†
Γϕi‖2 ≤ ‖ (Φ∗

ΓΦΓ)
−1 ‖2 ‖Φ∗

Γϕi‖2 .
Since ‖Φ∗

ΓΦΓ − I‖2 < 1/2, λmin(Φ
∗
ΓΦΓ) > 1/2, and

thus
∥∥∥(Φ∗

ΓΦΓ)
−1
∥∥∥
2
≤ 2. By coherence of Φ, ‖Φ∗

Γϕi‖2 ≤
μ
√
3m. Therefore, we have ‖Φ†

Γϕi‖2 ≤ 2μ
√
3m.

Note that, when Γ is fixed, T is a random subset of Γ. By

Lemma 4.2, for each i /∈ Γ,

P

{∣∣∣〈Φ†
Γϕi,vΓ

〉∣∣∣ ≥ 1
}
≤ 16 · exp

(
− 1

192μ2m

)
.

Now, from the initial assumption,√
μ2m · s logN ≤ C ≤ 1/24 =⇒ μ2m ≤ (242·s logN)−1.

Hence we obtain,

P

{∣∣∣〈Φ†
Γϕi,vΓ

〉∣∣∣ ≥ 1
}
≤ 16 · exp

(
−242 · s logN

192

)

≤ 16N−3s ≤ 1

2
N−3s+1 ≤ 1

2
N−s−1.

Taking union bound,

P

{∣∣∣〈Φ†
Γϕi,vΓ

〉∣∣∣ < 1 for i /∈ Γ
}
≥ 1− 1

2
N−s.

By Lemma 5.2, for any given Γ with ‖Φ∗
ΓΦΓ − I‖2 <

1/2, with probability 1 − (1/2)N−s, every vector supported

on T with signs 1 can be recovered using �1 minimization.

The result follows from (3).

Theorem 6.2. Let d ≥ 80. Let Φ ∈ C
d×2d be a pair of

orthonormal bases with coherence μ. Let ζ ∈ C
d where ζi

are i.i.d. uniform on the unit circle. Fix η ∈ C
d with |ηi| = 1.

Fix T1 ⊆ {1, ..., d} with |T1| = m1 ≥ 2. Let T2 be a random
subset of {d+ 1, ..., 2d} with size m2 ≥ 2. Let T = T1 ∪ T2

and β = [ζ η]. Let s ≥ 1. If

μ2(m1 +m2)s log d ≤ C,

where C > 0 is a constant, then a vector x ∈ C
N with

supp(x) = T and sgn(xi) = βi for all i ∈ T is the unique
solution of (P1) with y = Φx, with probability 1− d−s.

Proof. We take C = min(c/6, 1/2304), where c is the con-

stant in Theorem D of [5]. The proof is similar to that of

Theorem 6.1.
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