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ABSTRACT

In this paper, we consider orthogonal matching pursuit (OMP) al-
gorithm for multiple measurement vectors (MMV) problem. The
robustness of OMPMMV is studied under general perturbations—
when the measurement vectors as well as the sensing matrix are in-
corporated with additive noise. The main result shows that although
exact recovery of the sparse solutions is unrealistic in noisy scenario,
recovery of the support set of the solutions is guaranteed under suit-
able conditions. Specifically, a sufficient condition is derived that
guarantees exact recovery of the sparse solutions in noiseless sce-
nario.

Index Terms— Multiple measurement vectors (MMV), orthog-
onal matching pursuit (OMP), compressive sensing (CS), general
perturbations.

1. INTRODUCTION

Finding the sparse solution to an under-determined linear equation
is one of the most basic problems in some fields of signal process-
ing. It has also received significant attention since the introduction
of compressive sensing (CS), which is widely investigated in the past
decade [1]. The basic mathematical formula is

y = Φx. (1)

In the field of CS, y ∈ C
m denotes the measurement vector, Φ ∈

C
m×n with m < n is called the sensing matrix, and x ∈ C

n is the
sparse signal to be recovered, which means most of its entries are
zero. (1) is also termed single measurement vector (SMV) problem.
Many algorithms, including orthogonal matching pursuit (OMP), are
proposed to solve the SMV problem. The recovery performances
of these algorithms are studied in several scenarios, depending on
whether the noise on y or Φ exists. Many researches have been
done on the recovery accuracy of OMP in those scenarios [2–4].

In this paper, the recovery performance of computing sparse so-
lutions to multiple measurement vectors (MMV) is analyzed. The
MMV problem was initially motivated by a neuromagnetic inverse
problem which is involved in Magnetoencephalography [5]. In a re-
cently proposed system named the modulated wideband converter
(MWC) [6], MMV recovery also plays a important role in detecting
the locations of narrowband signals. The MMV problem is formu-
lated as the following equations

Y = ΦX , (2)
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where Y ∈ C
m×L, Φ ∈ C

m×n, and X ∈ C
n×L. The matrix Y

is made up of L measurement vectors, and matrix X is the sparse
signal to be recovered. Here, a matrix X is called jointly k-sparse
or k-sparse if it contains no more than k nonzero rows.

Recovery algorithms to the MMV problem include convex re-
laxation and OMPMMV, which is an extension of OMP to the MMV
[7, 8]. Other algorithms, including FOCal Underdetermined Sys-
tem Solver (FOCUSS) [5] and Joint �2,0 Approximation Algorithm
(JLZA) [9], are also put forward. When Y and Φ are unperturbed,
the recovery process of OMPMMV can be written as:

(N0) X̃ = R(Y ,Φ, k), (3)

where R denotes the recovery process, k denotes the sparsity level,
and X̃ is the approximation of the original sparse signal X . (N0)
process is an ideal one. It has been shown that under certain matrix-
norm-based conditions, sparse signal can be exactly recovered [8],
i.e. X̃ = X .

More generally, the perturbed observation matrix Ỹ and sensing
matrix Φ̃ in the form of

Ỹ = Y + B, Φ̃ = Φ + E. (4)

needs to be taken into account. In such scenario, the recovery pro-
cess becomes

(N2) X̃ = R(Ỹ , Φ̃, k). (5)

Such consideration is necessary because perturbations on Y and Φ
always exist in practice. In many CS scenarios, such as when Φ
represents a system model [6], E denotes the system perturbation
in realization. Also, B denotes the measurement perturbation when
quantization effects introduce considerable noise to Y .

As far as we know, few researches have been done yet on the
robustness of OMPMMV in (N2) process. In this paper, the cor-
responding theorem for SMV in [4] is extended to MMV under the
general (N2) scenario. The main result shows that under certain
conditions based on the Restricted Isometry Property (RIP), the lo-
cations of nonzero rows of X can be exactly recovered, and an upper
bound on the recovery error is given. In addition, it is demonstrated
that such conditions guarantee exact recovery of X in (N0) process.

1.1. Notations and Assumptions

Assume U ∈ C
n×L is a matrix, then its columns and rows are rep-

resented as uj , j = 1, . . . , L and U (i), i = 1, . . . , n, respectively.
Notice that in this paper, upper-case letters are used to denote matri-
ces. The support set supp(u) denotes the indices of nonzero entries
in vector u. The support set of a matrix U is defined as supp(U ) =⋃

j=1,...,L supp(uj). The number of elements in supp(u) and in

supp(U ) are denoted as ‖u‖0 and ‖U‖0, respectively.
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Table 1. The OMPMMV Algorithm

Input: Y , Φ, k;

Initial state: R0 = Y , Λ0 = ∅, l = 0;

Repeat
l = l + 1;

match step:

H l = ΦTRl−1;

identify step:

Λl = Λl−1 ⋃{arg maxj ‖H l(j)‖2};

update step:

X l = arg minZ :supp(Z)⊆Λl ‖Y − ΦZ‖F;

Rl = Y − ΦX l;

Until l = k;

Output: Xk.

The symbols σmax(·), σmin(·), ‖·‖2, and ‖·‖F, denote the max-
imum, minimum nonzero singular values, spectral norm, and Frobe-

nius norm of a matrix, respectively. Let ‖ · ‖(k)
2 denote the largest

spectral norm taken over all k-column submatrices. The perturba-
tions E and B can be quantified with the following relative bounds,

‖E‖2

‖Φ‖2
≤ ε0,

‖E‖(l)
2

‖Φ‖(l)
2

≤ ε, l = 1, . . . , k,
‖B‖F

‖Y ‖F

≤ εb. (6)

In this paper, it is assumed that ε0, ε, and εb are far less than 1.

2. BACKGROUND

2.1. Orthogonal Matching Pursuit for MMV (OMPMMV)

The key idea of OMPMMV, which is similar to OMP, lies in the
attempt to reconstruct the support set Λ of X iteratively by starting
with Λ = ∅. The pseudo-code of OMPMMV is described in Table 1.
In fact, the process of OMPMMV can be mathematically expressed
as follows.

Suppose Λ ⊂ {1, . . . , n}. Let u|Λ denote the |Λ| × 1 vector
containing the entries of u indexed by Λ. Let ΦΛ denote the m ×
|Λ| matrix obtained by selecting the columns of sensing matrix Φ

indexed by Λ. Φ†
Λ = (ΦT

ΛΦΛ)−1ΦT
Λ denotes the Moore-Penrose

pseudoinverse of ΦΛ. Define PΛ = ΦΛΦ†
Λ and P ⊥

Λ = I − PΛ

as the orthogonal projection operator onto the column space of ΦΛ

and its orthogonal complement, respectively. Define AΛ = P ⊥
Λ Φ.

From the theory of linear algebra, orthogonal projection operator P
obeys P = P T = P 2 and that the columns of AΛ indexed by Λ
equal zero.

Now, suppose that OMPMMV performs at lth iteration, and
Λl−1 is the estimation of supp(X) from the previous iteration. The
following discussion demonstrates the generation of Λl.

In the update step of the previous iteration, which is actually
solving a least squares problem, it can be derived that

Rl−1 = Y − ΦΛl−1X l−1|Λl−1 = Y − ΦΛl−1Φ
†
Λl−1Y

= (I − PΛl−1)Y = P ⊥
Λl−1ΦX = AΛl−1X . (7)

In the matching step, one has

H l = ΦT(P ⊥
Λl−1)

TP ⊥
Λl−1Y = AT

Λl−1AΛl−1X . (8)

Then, in the identify step, Λl = Λl−1 ⋃{arg maxj ‖H l(j)‖2}.
From (7), (8), and the fact that the columns of AΛ indexed by Λ

equal zero, several useful conclusions can be derived.

1. H l(j) = 0, ∀j ∈ Λl−1. Therefore arg maxj ‖H l(j)‖2 /∈
Λl−1, |Λl−1| = l − 1.

2. (8) can be written as H l = AT
Λl−1AΛl−1X∗l−1, where

X∗l−1|Λl−1 = 0 and X∗l−1|(Λl−1)c = X |(Λl−1)c .

It is easy to check that 1) still holds when Y and Φ in the above
analysis are contaminated ones, i.e.

H̃ l(j) = 0, ∀j ∈ Λl−1. (9)

2.2. The Restricted Isometry Property (RIP)

For each integer k = 1, . . . , n, the RIP for any matrix A ∈ C
m×n

defines the restricted isometry constant (RIC) δk which is the small-
est nonnegative number such that

(1 − δk)‖u‖2
2 ≤ ‖Au‖2

2 ≤ (1 + δk)‖u‖2
2 (10)

holds for any k-sparse vector u. In other words, A acts as an ap-
proximate isometry on the set of k-sparse vectors for a small δk.

3. CONTRIBUTIONS

Theorem 1: Suppose that the inputs Y and Φ of OMPMMV al-
gorithm are contaminated by noise as in (4). Define the relative per-
turbations ε0, ε, and εb as in (6). Let t0 = minj∈supp(X ) ‖X(j)‖2

and

εh =
9(2 + ε)ε

12 − 8(1 + ε)2

(
‖Φ‖4

2 +
2

3
‖Φ‖2

2

)
‖Φ‖2‖Y ‖F

+ (ε0 + εb + ε0εb)‖Φ‖2‖Y ‖F. (11)

If Φ satisfies the RIP of order k + 1 with isometry constant

δk+1 < Q(k, t0/εh), (12)

then for any k-sparse signal X , OMPMMV will recover the support
set of X exactly from Ỹ and Φ̃ in k iterations, and the error between
X and the recovered signal X̃ can be bounded as

‖X̃ − X‖F/‖X‖F < (ε + εb)F (1/
√

k). (13)

The functions in (12) and (13) are defined as follows:

Q(u, v) =
1

2
√

u + 1
− 4

√
u

2
√

u + 1

1(
2 + 1√

u

)
v − 2

, u, v ∈ R
+,

F (w) =

√
1 + w

2 − (1 + w)(1 + ε)2
, w ∈ (0, 1).

Remark 1: The above conclusion generalizes the result of The-
orem 1 in [4]. If L = 1, then the observation matrix and the sig-
nal matrix are reduced to vectors, which becomes an SMV problem.
Thus Theorem 1 here can be regarded as an extension from SMV to
MMV framework. Notice that the requirements in the above Theo-
rem 1 and the correspondent theorem in [4] share many similarities
in form. The differences include the definition of εb, t0, and the
change from �2 norm of y to Frobenius norm of Y . Besides, the
estimation error of X is derived in a relative form.
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Remark 2: For OMPMMV in the perturbed scenario (4), it is un-
realistic to achieve the exact recovery of X , because the least square
problem is actually solved with perturbed data. However, one can
still recover the support of X . This is of great significance in many
practical applications, e.g. the MWC [6] mentioned before.

Remark 3: An MMV problem can be considered as how to
achieve sparse representations for SMVs simultaneously. However,
by looking at εb, we show that MMV has an advantage over a simple
combination of SMVs. In (6), εb is defined as an upper bound on:

‖B‖F/‖Y ‖F =

√√√√ L∑
j=1

‖bj‖2
2/

L∑
j=1

‖yj‖2
2. (14)

From SMV view, maxj=1,··· ,L{‖bj‖2/‖yj‖2} cannot be too large
for support recovery. Under the MMV scenario, however, a very
large ‖bj‖2/‖yj‖2 may be balanced by other ‖bi‖2/‖yi‖2, i 	= j,
and therefore the support recovery is not influenced.

Though a completely perturbed situation is considered in Theo-
rem 1, it is helpful to consider three specific situations. The follow-
ing three corollaries are derived from Theorem 1.

Corollary 1: Suppose that Φ satisfies the RIP of order k + 1
with isometry constant

δk+1 <
1

2
√

k + 1
, (15)

then OMPMMV will recover X exactly from Y and Φ in k itera-
tions.

The proof of Corollary 1 is directly derived by setting B =
0, E = 0, and ε0 = ε = εb = 0. Thus εh = 0, and (12) reduces to
(15).

Because SMV is a special case of MMV when L = 1 holds,
Corollary 1 generalizes the results of Davenport [3] and Liu [10].
It was shown in the SMV case that δk+1 < 1/(3

√
k) is sufficient

for OMP to exactly recover any k-sparse signal [3] (Th.3.1). Later,
Liu and Temlyakov relaxed the bound on the isometry constant to
1/((1 +

√
2)
√

k) [10] (Th.5.2).

Corollary 2: Suppose that Ỹ , Φ̃, t0, and εb meet the assump-
tions made in Theorem 1, and Φ̃ = Φ, which means that only the
observation matrix is perturbed. Define

εh1 = εb‖Φ‖2‖Y ‖F. (16)

If Φ satisfies the RIP of order k + 1 with isometry constant

δk+1 < Q(k, t0/εh1), (17)

then OMPMMV will recover the support set of X exactly from Ỹ
and Φ in k iterations. The recovery error can be bounded as

‖X̃ − X‖F/‖X‖F < εb(
√

k + 1)/
√

k − 1. (18)

Corollary 3: Suppose that Ỹ , Φ̃, t0, ε0, and ε meet the as-
sumptions made in Theorem 1, and Ỹ = Y , which means that only
the sensing matrix is perturbed. Define

εh2 =
9(2 + ε)ε

12 − 8(1 + ε)2

(
‖Φ‖4

2 +
2

3
‖Φ‖2

2

)
‖Φ‖2‖Y ‖F

+ ε0‖Φ‖2‖Y ‖F. (19)

If Φ satisfies the RIP of order k + 1 with isometry constant

δk+1 < Q(k, t0/εh2), (20)

then OMPMMV will recover the support set of X exactly from Y
and Φ̃ in k iterations. The recovery error can be bounded as

‖X̃ − X‖F/‖X‖F < εF (1/
√

k). (21)

The above two corollaries suggest that the relative recovery error
scales almost linearly with the noise level εb or ε when k is fixed.

4. BRIEF PROOFS

4.1. Some Lemmas

Before proceeding to Theorem 1, let us give some helpful lemmas
first. For detailed proofs please refer to the full version of this paper
[11].

Lemma 1 ( [11], Lemma 4): Let Λ ⊂ {1, 2, . . . , n} and
suppose X∗ ∈ R

n×L with supp(X∗) ∩ Λ = ∅. Define H =
AT

ΛAΛX∗. Then if Φ satisfies the RIP of order ‖X∗‖0 + |Λ| + 1
with isometry constant δ, it holds that

‖H(j) − X∗(j)‖2 ≤ δ

1 − δ
‖X∗‖F (22)

for all j /∈ Λ.

Lemma 2 ( [11], Lemma 5): Suppose that Λ, X∗, H and δ
meet the assumptions specified in Lemma 1, C is a constant, and
H̃ is the matrix in the matching step of OMPMMV which satisfies
‖H̃ − H‖F ≤ C. If

max
j∈{1,2,...,n}

‖X∗(j)‖2 >
2δ

1 − δ
‖X∗‖F + 2C, (23)

it is guaranteed that arg maxj ‖H̃(j)‖2 ∈ supp(X∗).

Lemma 2 is proved by associating Lemma 1 with (23) using the
triangle inequality, which is detailed in [11].

Lemma 3 ( [11], Lemma 6): Suppose that ‖H̃ l−H l‖F ≤ C
holds in the lth (l = 1, . . . , k) iteration during OMPMMV running,
and Φ satisfies the RIP of order k + 1 with isometry constant

δk+1 < Q(k, t0/C). (24)

Here, C and t0 = minj∈supp(X ) ‖X(j)‖2 are two constants. Then

OMPMMV will recover the support set of X exactly from Ỹ and Φ̃
in k iterations.

Lemma 3 is derived from Lemma 2. Because (24) results in (23)
in each iteration, Lemma 2 can be used to guarantee that the chosen
item belongs to the support set [11].

4.2. Proof of Theorem 1

Proof. Similar to the scenario of OMP, here we need to give the
upper bound on ‖H̃ l − H l‖F (for all l ∈ {1, . . . , k}), and then

replace the C in Lemma 3 with this bound. ΔH l = H̃ l − H l can
be written as ΔH l = (Δhl

1, . . . , Δhl
L), where

Δhl
i = h̃i

l − hl
i =ET(I − P̃Λl−1)yi − ΦT(P̃Λl−1 − PΛl−1)yi

+ Φ̃T(I − P̃Λl−1)(ỹi − yi), i = 1, . . . , L.

3815



From the proof of (38) in [4], there is

‖Δhl
i‖2 ≤‖ET‖2‖I − P̃Λl−1‖2‖yi‖2

+ ‖ΦT‖2‖P̃Λl−1 − PΛl−1‖2‖yi‖2

+ ‖Φ̃T‖2‖I − P̃Λl−1‖2‖ỹi − yi‖2

≤ 9(2 + ε)ε

12 − 8(1 + ε)2

(
‖Φ‖4

2 +
2

3
‖Φ‖2

2

)
‖Φ‖2‖yi‖2

+ ε0‖Φ‖2‖yi‖2 + (ε0 + 1)‖Φ‖2‖bi‖2

Combining this and Lemma 1 in [11], one gets

‖ΔH l‖F =

√√√√ L∑
j=1

‖Δhl
j‖2

2

≤ 9(2 + ε)ε

12 − 8(1 + ε)2

(
‖Φ‖4

2 +
2

3
‖Φ‖2

2

)
‖Φ‖2

√√√√ L∑
j=1

‖yj‖2
2

+ ε0‖Φ‖2

√√√√ L∑
j=1

‖yj‖2 + (ε0 + 1)‖Φ‖2

√√√√ L∑
j=1

‖bj‖2
2.

(25)

Notice that√√√√ L∑
j=1

‖yj‖2
2 = ‖Y ‖F,

√√√√ L∑
j=1

‖bj‖2
2 = ‖B‖F ≤ εb‖Y ‖F. (26)

Applying (26) to (25), one gets the upper bound on ‖ΔH l‖F:

‖ΔH l‖F ≤ 9(2 + ε)ε

12 − 8(1 + ε)2

(
‖Φ‖4

2 +
2

3
‖Φ‖2

2

)
‖Φ‖2‖Y ‖F

+ (ε0 + εb + ε0εb)‖Φ‖2‖Y ‖F.

At the end of the proof, (13) is proved as follows. According to
(2) and (4), there is

Ỹ = Φ̃X − EX + B.

Because Λ = supp(X) is exactly recovered, one has

X̃ |Λ = Φ̃†
ΛỸ = X |Λ + Φ̃†

Λ(−EX + B).

Thus

‖X̃ − X‖F

‖X‖F

≤ ‖Φ̃†
Λ‖2

‖E‖(k)
2 ‖X‖F + ‖B‖F

‖X‖F

≤ 1√
1 − δ̃k

(
‖E‖(k)

2 + εb
‖Y ‖F

‖X‖F

)

≤ ‖E‖(k)
2 + εb‖Y ‖F/‖X‖F√

2 − (1 + δk)(1 + ε)2
.

Notice that

‖Y ‖F

‖X‖F

=
‖ΦX‖F

‖X‖F

≤ ‖Φ‖(k)
2 ‖X‖F

‖X‖F

≤
√

1 + δk,

it can be concluded that

‖X̃ − X‖F

‖X‖F

≤ (ε+εb)

√
1 + δk

2 − (1 + δk)(1 + ε)2
= (ε+εb)F (δk).

(27)

It has been mentioned in [3] that the theoretical upper bound of δk+1

is 1/
√

k for exact recovery of support set, if δk+1 is used as a suf-

ficient condition for recovery of x. Thus, δk ≤ δk+1 < 1/
√

k.
Applying this to (27), one finally gets (13).

5. CONCLUSION

In this paper, robustness of OMPMMV under general perturbations,
which are in the form of Ỹ = Y + B and Φ̃ = Φ + E, is stud-
ied. Though exact recovery of the sparse solutions X from Ỹ and
Φ̃ is no longer realistic, Theorem 1 shows that exact recovery of
the support set can be guaranteed under suitable conditions, which
is important in many practical applications. Furthermore, the recov-
ery error is bounded. This completely perturbed framework extends
some prior work in [3, 4, 10] from SMV to MMV.
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