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ABSTRACT
In this paper, we introduce a time-stampless adaptive nonuni-
form sampling (TANS) framework, in which time increments

between samples are determined by a function of the m
most recent increments and sample values. Since only past

samples are used in computing time increments, it is not

necessary to save sampling times (time stamps) for use in

the reconstruction process. We focus on two TANS schemes

for discrete-time stochastic signals: a greedy method, and

a method based on dynamic programming. We analyze the

performances of these schemes by computing (or bounding)

their trade-offs between sampling rate and expected recon-

struction distortion for Markovian signals. Simulation results

support the analysis of the sampling schemes. We show that

by opportunistically adapting to local signal characteristics

TANS may lead to improved power efficiency in some

applications.

I. INTRODUCTION
Sampling is essential in any digital system that interfaces

with the analog world. All else being equal, it is desirable

to minimize the number of samples while maintaining an

acceptable reconstruction distortion. In some applications,

minimizing the number of samples can be translated into

having a power-efficient sampling, since the power consump-

tion at an analog-to-digital converter (ADC) is approximately

proportional to its sampling rate [1]. Also, having fewer

samples can increase the efficiency of other processing of

these measurements. For example, if these samples should be

transmitted to another place via a communication channel,

having fewer samples will improve power and bandwidth

efficiencies.
A uniform sampling at the Nyquist rate of the signal

may cause some redundant samples, since the global signal

bandwidth may not be a good measure of local variations

of the signal. Although traditional nonuniform sampling

schemes (e.g., [2]) deal with this problem, they have certain

limitations. Firstly, they are mostly designed to operate under

specific conditions for restrictive signal models (e.g., [3])

and, secondly, sampling times (i.e., time stamps) must be

stored/transmitted to be used in the reconstruction process.

This may cause power/bandwidth inefficiencies in sam-

pling/communication procedures.
In this paper, we introduce a new framework for an

adaptive nonuniform sampling scheme (see Figure 1). The

Fig. 1. A schematic view of the TANS framework: sampling

times are determined by a function of m most recently taken

samples. Hence, it is not necessary to save sampling times

(time stamps) for use in the reconstruction process.

key idea of this framework is that time increments between
samples are computed by using a function of previously
taken samples. Therefore, keeping sampling times (time

stamps), except initialization times, is not necessary. The

function by which sampling time intervals is computed is

called the sampling function. The aim of this sampling

framework is to have a balance between the reconstruction

distortion and the average sampling rate. We refer to this

sampling framework as Time-stampless Adaptive Nonuni-
form Sampling (TANS). The TANS concept can be applied

on continuous- or discrete-time signals, and the design and

analysis can be based on deterministic or stochastic models.

II. TANS FRAMEWORK

In this section, we introduce the TANS framework.

Fix some nonnegative integer m and suppose the ith
sample of signal X(t) is taken at time ti. We take

the (i + 1)st sample after a time increment of Ti =
f ({(tj , X(tj)) : i−m+ 1 ≤ j ≤ i}) , where f is called the

sampling function. This makes the sampling rate adapt to

local characteristics of the signal. Since the time increment

is a function of the m most recently taken samples, we say

the order of the sampling function f is m. The sampling is

nonuniform except in the trivial cases when f is a constant-

valued function (e.g., m = 0). Some initialization of the

first m sampling times is necessary, but the effect of this

initialization on the rate is amortized.

The sampling function is known at the reconstruction

side. Assuming that the state Sti = {(tj , X(tj)) : i −
m + 1 ≤ j ≤ i} is also known at the reconstruction side

when reconstructing X(t) on [ti, ti+1], there is no need for
the sampling times (time stamps) to be transmitted. These

times can be computed by using the sampling function and
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previously taken samples: ti+1 = ti + f (Sti) . This type

of synchronization in an adaptive system without explicit

communication is often called backward adaptation [4]. In

a practical setting involving both sampling and quantization,

backward adaptivity requires using the quantized values to

drive the adaptation [5]. Here, to maintain focus on sampling

rate and adaptation of sampling increments, we do not

explicitly include quantization effects. Note that while the

sampling time selection is causal, the reconstruction method

can be causal or non-causal.

Suppose X̂(t) is the reconstructed signal computed by

some reconstruction method. For the case of discrete time

and a stochastic signal model, define d(Sti , Ti) as the

expected reconstruction distortion over samples from time

ti + 1 until time ti+1 − 1. That is,

d(Sti , Ti) = EX

[
ti+1−1∑
t=ti+1

D
(
X(t), X̂(t)

)]
,

where X is the known probabilistic model of the signal

X(t) and D(X(t), X̂(t)) represents the distortion at time

t.Note that at times ti and ti+1 the reconstruction distortion

is zero since exact sample values are known at these times.

In realistic cases and for a given state Sti , d(Sti , Ti) is an

increasing function with respect to Ti, because the greater the

next sampling step, the greater the reconstruction distortion.

On the other hand, the greater the next sampling step, the

larger the rate benefit. Hence, a rate penalty can be defined

as a(Sti , Ti) = ρ/f(Sti) = ρ/Ti, where ρ is a rate award

parameter. We define the cost of each sampling state as the

sum of the expected reconstruction distortion and the rate

penalty, that is, c(Sti , Ti) = d(Sti , Ti) + a(Sti , Ti). The

overall cost of the sampling process is the sum of different

sampling state costs, that is,
∑

i c(Sti , Ti).
In this paper, we consider Markovian signals:

X(t+ 1) = αθtX(t) + Zθt(t+ 1), (1)

where θt represents the state of a hidden Markov chain

(MC) with state transition probabilities depicted in Figure 2.

At time t, if the MC is at state 0, θt = 0; otherwise, θt = 1.

Depending on the value of θt, the signal is generated by

a first-order AR model with parameter αθt and the noise

variance 1− α2
θt

.

In the TANS problem setup, we are interested in designing

sampling functions which minimize the overall sampling

cost. In this paper, we propose two systematic ways to

design sampling functions. In Section III, we describe greedy

methods and in Section IV, dynamic programming based

sampling functions are investigated.

III. GREEDY TANS
In this section, we investigate greedy sampling functions.

In all of these sampling schemes, the reconstruction function

is assumed to be a generalized linear prediction filter (a

Fig. 2. A hidden Markov chain considered in Markovian

signal model of equation (1).

linear prediction filter which uses a set of nonuniform

samples) introduced in reference [6]. Note that it is a causal

reconstruction function.

In greedy methods, a sampling function is computed as

follows:

Ti = argmin
T

c(Sti , T ) (2)

where f(Sti) = Ti.

Intuitively, at each sampling state, the next sample is taken

to minimize the cost of that state. Consider a Markovian

signal described by (1), where θt represents the state of a

hidden underlying Markov chain depicted in Figure 2. In

this section, for simplicity we assume the MC is symmetric

(i.e., p01 = p10). However, all arguments can be extended

for a general MC. We also assume that α0 and α1 are

known. However, the state of the Markov chain (i.e., θt)
is unknown and needed to be estimated by using the taken

samples. We use a generalized linear prediction filter for the

reconstruction.

Extending the previous notation, define θSti
as the state of

the MC during the sampling state Sti . If during Sti the MC

state stays at zero, θSti
= 0. Similarly, if the MC state stays

at one, θSti
= 1. Otherwise, if there is an MC transition

within this sampling state, θSti
= 2. We assume that θSti

is unknown and needs to be estimated by using the taken

samples. The estimated value of θSti
is referred by θ̂Sti

. The

error probability of this estimation is referred by Pe(Sti) =
Pr(θ̂Sti

�= θSti
).

The following described a greedy TANS method for

Markovian signals:

Algorithm 1: A greedy sampling function for the consid-

ered Markovian signal has the following steps:

• Step i,0: Compute θ̂Sti
and Pe(Sti).

• Step i,1: Compute Ti = argminT c(Sti , T |θ̂Sti
), where

c(Sti , T |θ̂Sti
) is the sampling state cost given θ̂Sti

(see

(3) and (4)).

• Step i,2: Take a sample at time ti + Ti.

• Step i,3: Compute Sti+1. Repeat.

For simplicity, we assume that the sampling increment T
is small enough that the probability of having more than

one MC transition is negligible. In other words, we assume
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maxi Ti ≤ Tup, p
(Tup−1)
00 � 1

2 and p
(Tup−1)
11 � 1

2 . If

MC transition probabilities p01 and p10 are small enough,

this assumption is reasonable. Under these assumptions, the

sampling state cost, c(Sti , T ), can be conditioned on the

value of θ̂Sti
as follows:

c(Sti , T | θ̂Sti
= 0)

≈ (1− Pe(Sti))
T−1∑
�=1

(1− α2�)

+Pe(Sti)(T − 1)σ2
max +

ρ

T
. (3)

It says, if the estimation is correct (with probability

1 − Pe(Sti)), the sampling state cost is
∑T

l=1 1 − α2l
0 . If

the estimation process fails (with probability Pe(Sti)), a

maximum prediction error variance σ2
max occurs where σ2

max

is the maximum prediction error variance (in this example,

σ2
max = 1). The sampling state cost function conditioned on

θ̂Sti
= 1 (i.e., c(Sti , T | θ̂Sti

= 1)) can be written similarly.

Finally, for the case θ̂Sti
= 2, we assume that the prediction

variance is the maximum prediction error variance σ2
max:

c(Sti , T | θ̂Sti
= 2) = (T − 1)σ2

max +
ρ

T
. (4)

We analyze the performance of the proposed greedy sam-

pling scheme in Theorem 2. Before presenting this theorem,

we introduce some notations. Suppose that, for all Sti ,

P low
e ≤ Pe(Sti) ≤ P up

e . By considering an upper bound

on Pe(Sti), we define

T low
0 = argmin

T
(1− P up

e )
T−1∑
l=1

(1− α2l
0 )

+ P up
e (T − 1)σ2

max +
ρ

T
. (5)

T up
0 is defined similarly by considering a lower bound on

Pe(Sti). Analogously, T up
1 and T low

1 can be defined.

Also, dup0 , an upper bound on the expected reconstruction

distortion per sample given θ̂Sti
= 0 is defined as follows:

dup0 =
1

T up
0

{
(1−P up

e )

Tup
0 −1∑
�=1

(1−α2�
0 )+Pup

e (Tup
0 −1)σ2

max

}
.

Quantities dlow0 , dup1 and dlow1 are defined similarly.

The following theorem provides analytical upper and

lower bounds on the average sampling rate and the expected

reconstruction distortion of the greedy sampling scheme

introduced in Algorithm 1.

Theorem 2: Consider a Markovian signal defined in (1)

over a large enough time interval [0, Ttot]. An achievable

rate-distortion pair (R,D) of the greedy sampling scheme

of Algorithm 1 can be bounded as follows:

1

2T up
0

+
1

2T up
1

≤ R ≤ 1

2T low
0

+
1

2T low
1

dlow0

2
+

dlow1

2
≤ D ≤ dup0

2
+

dup1
2

.

Remarks:

1) The proof of Theorem 2 with analytical solutions of

optimization setups can be found in the full version

of this paper on arXiv. In this paper, we compare

analytical results with simulation ones in Section V.

2) In the first step of this sampling function, we need to

estimate θSti
by using m most recently taken samples

of the signal and compute its probability of error

Pe(θ̂Sti
). If m is not too large, a maximum likelihood

estimation can be used. However, when the order of the

sampling function is large and/or autocorrelation co-

efficients change continuously, a maximum likelihood

estimator may not be practically interesting. In these

cases, we can use previously taken samples within

a window of size W from the last sample (i.e., all

taken samples from time ti − W + 1 to the time ti)
to update or estimate autocorrelation coefficients to

use in the sampling function. A gradient-based update

can be used as follows: Suppose at the sampling state

Sti−1 , the set of estimated autocorrelation coefficients

is {r̂(j) : j ≥ 1}. By taking a sample at time ni, these

coefficients are updated as follows:

r̂(j) := r̂(j) + γ(X(ti)X(ti − j)− r̂(j)) (6)

for all possible j’s, where := represents an update sign,

and γ > 0 is a gradient step size. This gradient-based

update method can be useful when W is not large.

IV. DYNAMIC PROGRAMMING-BASED TANS

In greedy TANS, sampling functions are derived based on

minimizing the sampling cost at each sampling state. Hence,

it does not take into account the quality of next sampling

states. Intuitively, the larger the sampling increment at the

sampling state Sti , the lower the quality of the next sampling

state. Therefore, in general, greedy methods may not provide

optimal sampling functions with respect to the overall sam-

pling cost.

We consider quality of next sampling states in dynamic

programming-based TANS methods.

A solution of this Bellman-Ford equation (BFE) ( [7]) can

provide an optimal solution for the TANS sampling problem

when the reconstruction function is causal. However, finding

this optimal solution in most of cases can be computationally

difficult. Here, we propose sampling functions based on

approximate dynamic programming (ADP) algorithms. We

define a quality function q(Sti) for each sampling state Sti .

A greedy solution is used to define this quality function.
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Fig. 3. Comparison of average sampling rate versus average

reconstruction distortion for a Markovian signal for various

methods.

Then, a sampling function can be computed as follows:

Ti = arg inf
T

c(Sti , T ) + βE[q(Sti+1)]. (7)

where 0 < β < 1 and q(Sti) = γT greedy
i . The following

describes a TANS algorithm based on approximate dynamic

programming for Markovian signals:

Algorithm 3: An approximate dynamic programming-

based sampling function for the Markovian signal of (1) can

be summarized as follows:

• Step i,0: Compute θ̂Sti
, Pe(Sti) and q(Ŝti+1).

• Step i,1: Compute Ti = min c(Sti , T |θ̂Sti
)+βq(Ŝti+1).

• Step i,2: Take a sample at time ti + Ti.

• Step i,3: Compute Sti+1. Repeat.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-

posed sampling schemes by simulations and compare their

performance against uniform sampling (in uniform sampling,

for a given rate R = 1/Tuni where Tuni is not an integer

number, the ith sample is taken at time ti = round(Tuni).).
Figure 3 shows rate-distortion curves achieved by simula-

tions for greedy TANS and compares it with analytical lower

bound and various uniform sampling schemes. We assume

α0 = 0.01 and α1 = 0.99. We use a maximum likelihood

estimation block with m = 10 to estimate the state of the

underlying Markov chain. For greedy TANS, we use gen-

eralized linear prediction (GLP) filter as the reconstruction

method. Note that, this reconstruction is causal. For uniform

sampling, we use three reconstruction methods: causal line-

connecting (CLC), non-causal line-connecting (NCLC) and

GLP filtering. Note that, the proposed greedy TANS outper-

forms other uniform sampling schemes (even the uniform

sampling with non-causal reconstruction method). Also, the

proposed greedy TANS performs closely to the analytical

lower bound curve.

Figure 4 illustrates performance of a TANS scheme based

on approximate dynamic programming for a Markovian

signal explained in Algorithm 3. Here, we assume that
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Fig. 4. Comparison of a dynamic programming-based TANS

with greedy TANS for a Markovian signal model.

underlying Markov chain transition probabilities are 0.1 (i.e.,

p01 = p10 = 0.1). The signal parameters are assumed to be

α0 = 0.7 and α1 = 0.99. As illustrated in this figure, a

TANS scheme based on ADP outperforms the greedy one.

VI. CONCLUSIONS
In this paper, we introduced a new framework for an

adaptive nonuniform sampling scheme called time-stampless
adaptive nonuniform sampling, TANS. The key idea of this

framework is that time increments between samples are
computed by using a function of previously taken samples.

Therefore, keeping sampling times (time stamps), except

initialization times, is not necessary. We introduced two

methods to design sampling functions: a greedy method, and

a method based on dynamic programming. We analyzed the

performances of these schemes by computing (or bounding)

their trade-offs between sampling rate and expected recon-

struction distortion for Markovian signals.
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