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ABSTRACT

We propose a reconstruction procedure for periodic sequence

of K Diracs from noisy uniform measurements based on

the maximum likelihood estimation. We first express the

noise vector using the measurement vector and estimation

parameters. This expression and the probability density func-

tion (PDF) for the noise vector allow us to define the (log-

)likelihood function. We show that when the PDF is Gaus-

sian, the maximization of the likelihood function is equivalent

to finding the nearest sequence to the noisy sequence in the

Fourier domain. This problem can be efficiently solved by

combining an analytic solution and the so-called particle

swarm optimization (PSO) search. Computer simulations

show that the proposed method outperforms the conventional

methods with computational cost of approximately O(K).

Index Terms— Sequence of Diracs, signals with finite

rate of innovation, annihilating filter, maximum likelihood es-

timation

1. INTRODUCTION

One of the recent hot topics in sampling theory is sampling

for signals with a finite rate of innovation (FRI) [1], [2], [3].

A signal in this class has a parametric representation, and

the rate of innovation, which is defined by the number of

parameters in an arbitrary interval divided by the length of

the interval, is finite. For example, the sequence of Diracs,

non-uniform polynomial splines, piecewise polynomials, and

piecewise sinusoids [4] are included in the class.

Let us focus on the periodic sequence of K Diracs in this

paper. The representation parameters of this signal are the lo-

cation of Diracs and their intensity coefficients. The key fea-

ture of the signal is that the Fourier coefficients are given by a

linear combination of exponentials. Each of the exponentials

can be identified from the Fourier coefficients by using the

so-called annihilating filter. That is, we determine an auto re-

gressive filter that transforms the Fourier coefficients to a zero
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sequence. Factorization of the filter coefficients provides each

exponent, and then the location of Diracs is determined. The

intensity coefficients can be easily found thereafter.

When signals are degraded by noise, annihilating equa-

tions do not yield zero any more. The relevant solution to

this problem is to minimize the sum of squared residues of

annihilating equations [3]. Maravic et al. proposed the so-

called subspace-based approach [5]. Neither of these meth-

ods, however, exploits statistical information about noise.

Hence, in this paper, we propose a method that uses the

information based on the maximum likelihood estimation.

We first express noise vector by noisy measurement vector

and estimation parameters (locations of Diracs and intensity

coefficients). Substituting the expression to the probability

density function (PDF) for the noise vector leads us to the

(log-)likelihood function. We then assume that the PDF is

Gaussian and derive an explicit formula for the log-likelihood

function, which shows that the maximum likelihood esti-

mation is equivalent to finding the nearest sequence to the

noisy sequence in the Fourier domain. This problem can

be efficiently solved by combining an analytic solution and

the so-called particle swarm optimization (PSO) search [6].

Computer simulations show that the proposed method outper-

forms the least-squares and subspace-based approaches for

all signal-to-noise ratios from 0 to 50 [dB] with reasonable

computational costs of approximately O(K).
This paper is organized as follows. In Section 2 we sum-

marize the sampling and reconstruction of the periodic se-

quence of Diracs from noiseless measurements. In Section 3,

we take noise in measurements into account and define the

likelihood or log-likelihood functions. In Section 4, we de-

rive an explicit formula of the log-likelihood function for a

Gaussian distribution, and propose a method to find the best

solution to the criterion. Computer simulations are also per-

formed in this section. Section 5 concludes the paper.

2. NOISELESS FORMULATION

Assume that we observe a τ -periodic sequence of K(<∞)
Diracs, s(t), which is expressed using its single period signal
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s0(t) in the interval [0, τ) as

s(t) =
∞∑

k′=−∞
s0(t− k′τ),

where

s0(t) =
K−1∑
k=0

ckδ(t− tk),

and where 0 ≤ t0 < t1 < . . . < tK−1 < τ . The rate of inno-

vation is ρ = 2K/τ , which is finite because K is finite. Since

s(t) is periodic, it can be expressed by the Fourier series, in

which the coefficient is given by

d̂p =
1
τ

∫ τ

0

s(t)e−i2pπt/τdt =
1
τ

K−1∑
k=0

cku
p
k, (1)

where uk = e−i2πtk/τ .

Noiseless measurements {dn}N−1
n=0 are given by

dn = 〈s, ψn〉 =
∫ ∞

−∞
f(t)ψ(t− nT )dt, (2)

where T = τ/N . The sampling kernel is ψ(t) = Bsinc(Bt),
where B ≥ ρ = 2K/τ and sinc(t) is sin(πt)/(πt) if t �= 0,

or 1 if t = 0.

The unknown parameters {tk}K−1
k=0 and {ck}K−1

k=0 can

be retrieved from the measurements {dn}N−1
n=0 by the so-

called annihilating filter [1]. Let the filter coefficients be

[1, a1, . . . , aK ]. Then, the annihilating equations are

d̂p + a1d̂p−1 + . . .+ aK d̂p−K = 0 (3)

for p = K − P, . . . , P , where P = �Bτ/2	, the maximum

integer not exceeding Bτ/2. The Fourier coefficients d̂p are

obtained by the discrete Fourier transform (DFT) from the

measurements dn because of the sinc sampling. Simultane-

ously solving the annihilating equations yields the filter coef-

ficients, and factorization provides uk, and thus tk. We need

2K values of d̂p in the K equations of (3). Because of sym-

metry of the Fourier series to express real numbers dn, the

number of coefficients d̂p must be odd. Hence, we need at

least 2K + 1 measurements of dn: N ≥ 2P + 1. Once tk or

uk is obtained, we can determine ck by (1), which completes

the reconstruction for the noiseless case. For simplicity, we

consider the case where N = 2P + 1.

Let d and d̂ be the N dimensional vectors whose n-th

elements are dn and d̂n−P , respectively. Then, it holds that

d̂ = Fd, (4)

where F is the DFT matrix. Let t and c be K dimensional

vector whose k-th elements are tk and ck, respectively. Fur-

ther, let us define an N ×K matrix Ut by

Ut =

⎛
⎜⎜⎜⎝

u−P
0 u−P

1 . . . u−P
K−1

u−P+1
0 u−P+1

1 . . . u−P+1
K−1

...
...

. . .
...

uP
0 uP

1 . . . uP
K−1

⎞
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Fig. 1. Search space for the optimization of f(t0, t1). The

coarse search was conducted on the dotted pairs of (t0, t1).
The fine search was done around the optimal pair over twenty

times finer grid.

Then, (1) yields the matrix expression as

d̂ = Utc. (5)

3. ML ESTIMATION FROM NOISY
MEASUREMENTS

Now, we consider the case in which measurements dn are

corrupted by noise en as yn = dn + en. Let y and e stand for

the vectors whose n-th elements are yn and en, respectively.

Then, we have

y = d + e. (6)

In this case, the corresponding annihilating equation does not

hold for any coefficients ak in general:

ŷp + a1ŷp−1 + . . .+ aK ŷp−K �= 0,

where ŷp is the (p+P )-th element of the vector ŷ = Fy. The

relevant solution would be to minimize the sum of squares of

the left-hand side [3]. However, this does not always provide

a good solution because the noise level might not be moder-

ate. To obtain stable results even when noise level is severe,

we propose the use of maximum likelihood (ML) estimation.

To this end, we define a likelihood function as follows.

From (6), (4), and (5), we have

e = y − d = y − F−1d̂ = y − F−1Utc. (7)

Now, the noise vector e is expressed using the sample vector

y and the estimation parameter vectors t and c.

We assume that the probability density function p(e) is

known. Substituting (7) into p(e) enables us to define the

likelihood function

L(t, c) = p(y − F−1Utc),
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Standard Dev. Standard Dev.

Input SNR [dB] Input SNR [dB](a) t0 (b) t1

Input SNR [dB] Input SNR [dB](c) c0 (d) c1

Fig. 2. Standard deviations of the estimated values for (a) t0, (b) t1, (c) c0, and (d) c1 when the input signal-to-noise ratio

was 0[dB] ∼ 50[dB]. The red/thick and blue/thin solid lines show the results by the proposed methods with particle swarm

optimization and coarse-to-fine search, respectively. The black dotted and green dashed lines show the results by the least-

squares method and the subspace-based approach, respectively.

or the log-likelihood function

l(t, c) = log p(y − F−1Utc).

By maximizing either of these functions, we can precisely

estimate {tk}K−1
k=0 and {ck}K−1

k=0 .

4. GAUSSIAN NOISE

Assume that p(e) is the Gaussian distribution with zero mean

and the covariance matrix σ2I , where σ is a known positive

number and I is the identity matrix. Then, the log-likelihood

function yields

l(t, c) = −‖y − F−1Utc‖2

2σ2
+ Const.

This implies that the maximization of the log-likelihood func-

tion l(t, c) is equivalent to the minimization of the norm ‖y−

F−1Utc‖2, which is further equivalent to that of

fo(t, c) = ‖ŷ − Utc‖2, (8)

where ŷ = Fy. Equation (8) implies that the maximum like-

lihood estimation finally resulted in the least mean square es-

timation in the Fourier domain. We now solve the minimiza-

tion problem of (8). Note that (8) is quadratic in terms of c.

Hence, its optimal solution for fixed t can be determined as

c = U†
t ŷ, whereU†

t is the Moore-Penrose generalized inverse

of Ut. Hence, t and c that minimizes fo(t, c) in (8) are given

by t which minimizes

f(t) = fo(t, U
†
t ŷ) = ‖ŷ − UtU

†
t ŷ‖2, (9)

and c = U†
t ŷ with the resultant t. Further, because of the or-

der relation among {tk}K−1
k=0 , we can restrict the search space.

For example, when K = 2, the two parameters t0 and t1 are

looked for in the triangle area shown in Fig. 1.
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[Second]

K (number of Diracs)

Fig. 3. Computational cost. The same legends are used as in

Fig. 2.

To find the optimum parameters in the space, we adopted

two optimization approach. One is a coarse-to-fine search.

First, f(t0, t1) is evaluated on the dotted pairs of (t0, t1), and

then it is further evaluated over a 21×21 square grid around

the optimal pair during the coarse search. The grid in the

second search is twenty times finer than the coarse one.

The other is a particle swarm optimization (PSO) [6],

which is a population based stochastic optimization tech-

nique. The algorithm is first initialized with a group of ran-

dom particles and then searches for the optimal solution by

updating particles by both the best solution for each particle

achieved so far and the global best solution in the population.

To avoid divergence of the algorithm, we suppressed particle

movement as iteration increases. We used thirty particles and

stopped computation after four hundred iterations.

We measured K = 2 Diracs located at t0 = 0.19 and

t1 = 0.63. The period was τ = 1. The coefficients were

c0 = 0.8 and c1 = 1.0, respectively. The number of samples

was N = 9 and then the redundancy was 2.25.

A hundred of noise vectors, e, were generated from the

Gaussian distribution in which σ was determined so that the

signal-to-noise ratio (SNR) becomes 0, 5, . . . , 50 [dB]. We es-

timated t0, t1, c0, and c1 from the noisy measurements using

the proposed method as well as the least-squares method [3]

and subspace-based approach [5]. The standard deviations of

the estimated values for t0, t1, c0, and c1 are shown in Fig. 2

(a), (b), (c), and (d), respectively. The red/thick and blue/thin

solid lines show the results obtained by the proposed meth-

ods with PSO and coarse-to-fine search, respectively. The

black dotted and green dashed lines show the results by the

least-squares method and the subspace-based approach, re-

spectively. We can see that the proposed method provides

more stable results than those of the conventional methods.

Since all of the methods produce the true values from noise-

less measurements, they perform mostly same when SNR is

high. When SNR is low, however, the proposed methods

outperform both of the conventional methods. For example,

when SNR is 0 [dB], the proposed method improved the stan-

dard deviation by 44% and 8% for t0 and c0, respectively. The

same tendency was seen for t1 and c1 as well.

Computational costs were compared in Fig. 3. We can

see that the proposed methods need more computation than

the conventional ones. It is still interesting to note that the

computational cost for the PSO method increases almost lin-

early while the coarse-to-fine search needs exponential cost.

To sum up, the proposed method with PSO is capable of pro-

viding stable results with reasonable computational cost.

5. CONCLUSION

We proposed a reconstruction procedure for the periodic se-

quence of K Diracs from noisy uniform measurements based

on the maximum likelihood estimation. We showed that when

the probability density function is Gaussian, the maximiza-

tion of the likelihood function is equivalent to finding the

nearest sequence to the noisy sequence in the Fourier domain.

This problem was efficiently solved by the particle swarm op-

timization search. Computer simulations showed that the pro-

posed method outperformed the conventional least-squares

approach for all SNR from 0[dB] to 50[dB] with computa-

tional costs of approximately O(K).
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