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ABSTRACT
This paper presents a sampling theorem for Manhattan-grid sam-
pling, which is a sampling scheme in which data is taken along
evenly spaced rows and columns. Given the spacing between the
rows, the columns, and the samples along the rows and columns,
the theorem shows that an image can be perfectly reconstructed
from Manhattan-grid sampling if its spectrum is bandlimited to a
cross-shaped region whose arm lengths and widths are determined
by the aforementioned sample spacings. The nature of such cross-
bandlimited images is demonstrated by filtering an image with a
cross-bandlimiting filter for several choices of sampling parameters.

Index Terms— Sampling theorem, Manhattan grids, cross-
bandlimited, rectangular sampling

1. INTRODUCTION

Manhattan-grid sampling is a new form of image sampling in which
data is taken along evenly spaced rows and columns. In particular,
as illustrated in Fig. 1, samples are taken at intervals of λx along
horizontal rows spaced Δy = kyλy apart, and also at intervals of
λy along vertical columns spaced Δx = kxλx, where kx and ky
are positive integers. This is a special case of cutset sampling that
has been used to good effect in both lossy and lossless image com-
pression, especially, for bilevel images [1–3]. The first stage of such
methods losslessly compresses Manhattan-grid samples, for exam-
ple with arithmetic coding (AC), which is efficient since the grid
samples are closely spaced and, hence, highly correlated. For loss-
less compression, the other pixels are then AC encoded, conditioned
on those in the grid, while for lossy compression no further encoding
is used, and the decoder estimates the remaining pixels from those on
the grid. Markov random field models guide the arithmetic coding
and the estimation. Recently, Manhattan-grid sampling has also been
proposed [5] as a general approach to sampling grayscale images,
with the motivations that (a) there are physical scenarios for which it
is far more natural than traditional lattice sampling, e.g. a ship sam-
pling water temperature, and (b) dense sampling along lines might
capture edge transitions more completely than conventional lattice
sampling with the same density. With the latter in mind, image re-
construction methods have been developed for Manhattan grids with
the goal of preserving edges [5].

This paper presents both a sampling theorem for Manhattan-grid
sampling and a concrete reconstruction method. In particular, given
the sampling parameters Δx,Δy, λx, λy , the theorem shows that an
image can be perfectly reconstructed from Manhattan-grid sampling
if its spectrum is bandlimited to a cross-shaped region whose arm
lengths and widths are determined by the sampling parameters, as
illustrated in Fig. 3. It also presents a reconstruction method that in-
volves first reconstructing a highpass portion of the image spectrum
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from just the samples on the horizontal rows, (alternatively, another
highpass portion could be reconstructed from samples on the verti-
cal columns), and then reconstructing the remainder of the spectrum
after subtracting the aliasing due to the highpass portion.

Sampling theorems are, of course, well known for lattices [6,
7], as well as for unions of lattice cosets [7]. In most of these, the
required bandlimitation is such that image spectrum replicas induced
by sampling do not overlap. However, there are also cases where the
replica spectra do overlap and, nevertheless, image reconstruction is
still possible [8]. The present sampling theorem is a special case
of the latter. However, instead of using the characterization in [8],
which starts with a spectral constraint and determines a sampling
pattern, in this paper, we restrict ourselves to the Manhattan-grid
sampling pattern and find the natural spectral constraint that enables
reconstruction from these samples. In other words, the theorem and
the reconstruction method are tailored specifically to Manhattan-grid
sampling. As a result, it is much easier to gain insight into this kind
of sampling, and the reconstruction is more straightforward.

The layout of our paper is as follows: In Section 2, we re-
view conventional rectangular sampling and relate it to Manhattan-
grid sampling. Section 3 defines a class of functions we call cross-
bandlimited functions. In Section 4, we define a set of recovery
filters to be used in reconstructing our original function from the
Manhattan grid samples. Section 5 contains the main result of this
paper – a sampling theorem that shows if an image is appropriately
cross-bandlimited, then it can be reconstructed from Manhattan-grid
samples with a specific method. To gain a sense for the nature of
the cross bandlimited constraint, Section 6 shows the effect of cross-
bandlimiting an image for several Manhattan grid sizes. Addition-
ally, these images have the property that they can be perfectly recon-
structed from their Manhattan grids.

2. RECTANGULAR AND MANHATTAN GRID SAMPLING

Conventional sampling on a rectangular lattice refers to sampling a
function f(x, y) at all points (x, y) in the lattice {(iΔx, jΔy); i, j ∈
Z}. It is convenient to represent such sampling with the multiplica-
tion of f(x, y) with a comb function. Let δ2(x, y) be an ideal 2D
Dirac delta function. Define a 2D comb function as

C (x, y; Δx,Δy) =

ΔxΔy

∞∑
n=−∞

∞∑
m=−∞

δ2(x− nΔx, y −mΔy) . (1)

The Dirac impulses are spaced in the x direction by Δx and in the y
direction by Δy . Rectangular lattice sampling of f(x, y) is then

fsr(x, y) = f(x, y) C (x, y; Δx,Δy) . (2)

We will refer to the Fourier transform of fsr(x, y) as Fsr(u, v).
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(a) Entire grid. (b) Close-up with parameters

Fig. 1. Manhattan-grid sampling. The ×’s mark the locations of the
horizontal samples fsx(x, y), and the ◦’s mark the locations of the
vertical samples fsy(x, y).

Suppose we want to sample a function on a horizontally dense
rectangular lattice. Define horizontal sampling as

fsx(x, y) = f(x, y) C (x, y;λx,Δy) , (3)

where 0 < λx < Δy < ∞. We will refer to the Fourier transform of
fsx(x, y) as Fsx(u, v). Note that in the Fourier domain, Fsx(u, v)
will contain a set of replicas of F (u, v) that are horizontally spaced
by 1

λx
and vertically spaced by 1

Δy
. In a similar fashion, we can

sample on a rectangular lattice where the vertical samples are taken
more densely. We define vertical sampling as

fsy(x, y) = f(x, y) C (x, y; Δx, λy) , (4)

where 0 < λy < Δx < ∞. Again, Fsy(u, v) will refer to
the Fourier transform of fsy(x, y), and it will contain replicas of
F (u, v) horizontally spaced by 1

Δx
and vertically spaced by 1

λy
.

As illustrated in Fig. 1, Manhattan-grid sampling refers to sam-
pling a function f(x, y) at all points (x, y) on the set {(iλx, jΔy)} :
i, j ∈ Z} ∪ {(iΔx, jλy)} : i, j ∈ Z}, where Δx = kxλx, and
Δy = kyλy for some positive integers kx, ky . It will be useful
to visualize a Manhattan grid as the union of a horizontally dense
rectangular lattice with a vertically dense rectangular lattice. Using
comb functions, we model Manhattan-grid sampling by multiplying
a function f(x, y) with

G (x, y; Δx,Δy, λx, λy) = C (x, y;λx,Δy)

+ C (x, y; Δx, λy)− C (x, y; Δx,Δy) . (5)

The third term on the RHS of the above cancels the overlap of
the other two comb functions. Thus, fsm(x, y) = f(x, y)G(x, y;
Δx,Δy, λx, λy) represents sampling on a Manhattan grid.

3. CROSS-BANDLIMITED FUNCTIONS

Cross-bandlimited functions are well suited to Manhattan grid sam-
pling. Let f(x, y) be a square-integrable function with 2D Fourier
transform F (u, v). For 0 < u1 < u2 < ∞ and 0 < v1 < v2 < ∞,
define the cross-shaped region B(u1, u2, v1, v2) in 2D frequency
space, illustrated in Fig. 2, to be

B = {|u| < u2, |v| < v1} ∪ {|u| < u1, |v| < v2} . (6)

We say f(x, y) or F (u, v) is cross-bandlimited to B(u1, u2, v1, v2)
if F (u, v) satisfies

F (u, v) = 0, (u, v) ∈ Bc. (7)

Fig. 2. The cross-bandlimited region B(u1, u2, v1, v2).

4. IDEAL RECOVERY FILTERS

In order to reconstruct a cross-bandlimited signal, we will need to
define a set of recovery filters. First consider the cross-shaped region

S = B
(

1
2Δx

, 1
2λx

, 1
2Δy

, 1
2λy

)
in 2D frequency space. We partition

S using the following regions:

S = Sl ∪ Shx ∪ Shy , (8)

where, as illustrated in Fig. 3,

Sl =

{
(u, v) : |u| < 1

2Δx
, |v| < 1

2Δy

}
(9a)

Shx =

{
(u, v) :

1

2Δx
< |u| < 1

2λx
, |v| < 1

2Δy

}
(9b)

Shy =

{
(u, v) : |u| < 1

2Δx
,

1

2Δy
< |v| < 1

2λy

}
. (9c)

We now define a collection of ideal filters on the support of these
regions. This collection will include a lowpass filter, a horizontal
highpass filter, and a vertical highpass filter. With IA denoting the
indicator function of the set A, the filters are

Hl(u, v) = ISl(u, v) (10a)

Hhx(u, v) = IShx(u, v) (10b)

Hhy(u, v) = IShy (u, v) . (10c)

If a function F (u, v) is cross-bandlimited to region S, then we
can use the partition property of these filters to decompose F (u, v)
into its lowpass, horizontal highpass, and vertical highpass bands.

F (u, v) = Fl(u, v) + Fhx(u, v) + Fhy(u, v) (11)

where

Fl(u, v) = Hl(u, v)F (u, v) (12a)

Fhx(u, v) = Hhx(u, v)F (u, v) (12b)

Fhy(u, v) = Hhy(u, v)F (u, v) . (12c)

5. SAMPLING THEOREM FOR MANHATTAN GRIDS

Before presenting our theorem, we begin with two useful facts.

Fact 1. Rectangular sampling theorem. Suppose we sample
a 2D square-integrable function f(x, y) with a comb function
fsr(x, y) = f(x, y) C (x, y; τx, τy). If F (u, v) = F {f(x, y)}
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Fig. 3. Support of the recovery filters

Fig. 4. For horizontal sampling, the shaded region shows the support
of the frequency replicas after sampling. The ×’s mark their centers.

is bandlimited in the frequency domain to the rectangular region
[− 1

2τx
, 1
2τx

] × [− 1
2τy

, 1
2τy

], then f(x, y) can be perfectly recov-
ered from a rectangular lowpass filter H(u, v) whose support is
[− 1

2τx
, 1
2τx

]× [− 1
2τy

, 1
2τy

] in the frequency domain via

f(x, y) = F−1 {H(u, v)F {fsr(x, y)}} . (13)

An alternative statement of the recoverability is that F (u, v)
and the sampled spectrum Fsr(u, v) are identical on the region
[− 1

2τx
, 1
2τx

]× [− 1
2τy

, 1
2τy

].

Proof. Well known.

Fact 2. Sampling a function bandlimited to a strip. Let f(x, y)
be a 2D square-integrable function bandlimited in the horizontal di-
rection to the vertical strip

[−α
λ
, α
λ

] × (−∞,∞) for some 0 <

α < 1
2

. If f(x, y) is horizontally sampled with rate 1
λ

, then the
spectrum of the sampled signal will be zero on the vertical strips
(α
λ
, 1
λ
− α

λ
)× (−∞,∞) and (− 1

λ
+ α

λ
,−α

λ
)× (−∞,∞). A simi-

lar result holds for functions bandlimited in the vertical direction.

Proof. Suppose f(x, y) is bandlimited in the horizontal frequency
u by

[−α
λ
, α
λ

]
. After sampling by 1

λ
in the horizontal direction, the

horizontal coordinates of the replicas of F (u, v) will be centered at
integer multiples of 1

λ
. As illustrated in Fig. 4, the spectral repli-

cas centered at u = 0 will have support on the horizontal interval
[−α

λ
, α
λ
]. The closest replicas that may have their spectral support

on [− 1
λ
, 1
λ
] are centered at u = ± 1

λ
. These bands have a half-

width of ±α
λ

, and their support lies on the intervals [− 1
λ
,− 1

λ
+ α

λ
]

and [ 1
λ
− α

λ
, 1
λ
]. It is easy to see that the only frequency intervals

that are guaranteed to be zero on [− 1
λ
, 1
λ
] are (− 1

λ
+ α

λ
,−α

λ
) and

(α
λ
, 1
λ
− α

λ
). Note that α < 1

2
prevents overlapping frequencies; at

α = 1
2

, we cannot guarantee any frequency regions to be zero.

The following is the main result of the paper.

Theorem 1. Manhattan-grid sampling theorem. Suppose we sam-
ple a square-integrable function f(x, y) using (Δx,Δy, λx, λy)
Manhattan-grid sampling. If the 2D Fourier transform F (u, v) =
F {f(x, y)} is cross-bandlimited to B

(
1

2Δx
, 1
2λx

, 1
2Δy

, 1
2λy

)
, then

f(x, y) can be recovered exactly. Furthermore, if Fsx(u, v) is the
spectrum of the horizontal samples and Fsy(u, v) is the spectrum of
the vertical samples, then f(x, y) can be recovered via

f(x, y) = F−1 {Fl(u, v) + Fhx(u, v) + Fhy(u, v)} , (14)

where
Fhx(u, v) = Hhx(u, v)Fsx(u, v) (15a)

Fhy(u, v) = Hhy(u, v)Fsy(u, v) , (15b)

and with � denoting 2D convolution,

Fl(u, v) = Hl(u, v)Fsy(u, v)

−Hl(u, v)

[
Fhx(u, v) �Δxλy C

(
u, v;

1

Δx
,
1

λy

)]
, (15c)

or, equivalently,

Fl(u, v) = Hl(u, v)Fsx(u, v)

−Hl(u, v)

[
Fhy(u, v) � λxΔy C

(
u, v;

1

λx
,

1

Δy

)]
. (15d)

Proof. It suffices to prove (14). Begin by letting f(x, y) be a square-
integrable function cross-bandlimited to B

(
1

2Δx
, 1
2λx

, 1
2Δy

, 1
2λy

)
.

We sample f(x, y) using (Δx,Δy, λx, λy) grid sampling. We will
use the conventions in Section 2 to denote the horizontally sampled
spectrum Fsx(u, v) and the vertically sampled spectrum Fsy(u, v).

First, we will prove that the highpass band Fhx(u, v) defined in
(12b) can be recovered from the spectrum of the horizontal samples
Fsx(u, v) using (15a). Similarly, the other highpass band Fhy(u, v)
can be recovered via (15b) by a symmetry argument. Consider the
spectrum of horizontal samples

Fsx(u, v) = F (u, v) � λxΔy C
(
u, v;

1

λx
,

1

Δy

)
(16)

where the λxΔy scaling is due to taking the Fourier transform of
C (x, y;λx,Δy). As before, this spectrum consists of a series of
replicas of F (u, v) in the frequency domain. Substituting (11) into
(16) and filtering with Hhx(u, v), we obtain

Hhx(u, v)Fsx(u, v) =

Hhx(u, v)

[
Fhx(u, v) � λxΔyC

(
u, v;

1

λx
,

1

Δy

)]

+Hhx(u, v)

[
Fl(u, v) � λxΔyC

(
u, v;

1

λx
,

1

Δy

)]

+Hhx(u, v)

[
Fhy(u, v) � λxΔyC

(
u, v;

1

λx
,

1

Δy

)]
.

(17)

In the first term on the RHS of the above, the signal Fhx(u, v) is
bandlimited to [− 1

2λx
, 1
2λx

] × [− 1
Δy

, 1
Δy

]. As noted in Section

2, rectangular sampling in the space domain causes the spectrum

Fhx(u, v) � λxΔy C
(
u, v; 1

λx
, 1
Δy

)
to contain shifted replicas of

F (u, v), By Fact 1, this spectrum is identical to Fhx(u, v) on the
interval [− 1

2λx
, 1
2λx

] × [− 1
Δy

, 1
Δy

]. Therefore, Fhx(u, v) can be

extracted by filtering with Hhx(u, v), and thus the first term of (17)
equals Fhx(u, v).
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(a) Original image “Bank” (b) Cross-bandlimited, 4× 4 (c) Cross-bandlimited, 8× 8 (d) Cross-bandlimited, 16× 16

Fig. 5. Examples of cross-bandlimited images. n× n Manhattan grid sampling corresponds to Δx = Δy = ns, λx = λy = 1s, where s is
the original pixel spacing. These images can be reconstructed from every nth row and nth column of pixels.

Now we show that the second and third terms on the RHS of (17)
are zero. Before sampling, the spectra Fl(u, v) and Fhy(u, v) are
bandlimited in the horizontal direction on the interval [− 1

2Δx
, 1
2Δx

].

Thus, the spectrum [Fl(u, v)+Fhy(u, v)]�λxΔy C
(
u, v; 1

λx
, 1
Δy

)
contains replicas of Fl(u, v) and Fhy(u, v). By Fact 2, the replicas
of Fl(u, v) and Fhy(u, v) do not overlap with the support of our
horizontal highpass filter Hhx(u, v), which has horizontal support
u ∈ [− 1

2λx
,− 1

2Δx
] ∪ [ 1

2Δx
, 1
2λx

]. Thus, filtering the last two terms

of (17) with Hhx(u, v) will force them to zero. As a result, the RHS
of (17) equal the RHS of (15a). (15b) can be derived similarly.

We now prove that the lowpass band Fl(u, v) can be recovered
via (15c). A similar argument can be used to derive (15d). Define
Gx(u, v) to be the components of Fhx(u, v) that alias in the lowpass
domain when vertically sampled at (Δx, λy), i.e.

Gx(u, v) =

Hl(u, v)

[
Fhx(u, v) �Δxλy C

(
u, v;

1

Δx
,
1

λy

)]
(18)

Now consider the spectrum of Fsy(u, v) filtered with Hl(u, v):

Hl(u, v)Fsy(u, v) =

Hl(u, v)

[
Fl(u, v) �Δxλy C

(
u, v;

1

Δx
,
1

λy

)]

+Hl(u, v)

[
Fhx(u, v) �Δxλy C

(
u, v;

1

Δx
,
1

λy

)]

+Hl(u, v)

[
Fhy(u, v) �Δxλy C

(
u, v;

1

Δx
,
1

λy

)]
(19)

By Fact 1, the first term of (19) is simply Fl(u, v). The second term
of (19) is Gx(u, v) by definition. The third term of (19) is zero.
To see why, note that Fhy(u, v) is bandlimited to [− 1

2Δx
, 1
2Δx

] ×
[− 1

2λy
, 1
2λy

] and is being sampled by C (x, y; Δx, λy). By Fact 1,

the spectrum of Fhy(u, v) � ΔxλyC
(
u, v; 1

Δx
, 1
λy

)
is identical to

Fhy(u, v) on the region [− 1
2Δx

, 1
2Δx

] × [− 1
2λy

, 1
2λy

]. Since the

highpass spectrum Fhy(u, v) is zero on the support of the lowpass
filter Hl(u, v), the third term is zero. Thus, we are left with:

Hl(u, v)Fsy(u, v) = Fl(u, v) +Gx(u, v) (20)

All that is needed is to subtract (18) from (20) to obtain the desired
result (15c). Likewise, (15d) follows by a symmetry argument.

Summing (15a), (15b), and either (15c) or (15d), and taking the
inverse Fourier transform yields (14).

6. THE EFFECTS OF CROSS BANDLIMITING

We filtered a 512×512 image with a cross-bandlimiting filter corre-
sponding to sampling parameters Δx = Δy = ns and λx = λy =
1s, where s refers to the original pixel spacing and n is some posi-
tive integer. Figure 5(a) shows the original image. Figures 5(b), 5(c)
and 5(d) show the image after it has been cross-bandlimited using
4× 4, 8× 8, and 16× 16 Manhattan grids, respectively.

The cross-bandlimiting filter has caused the images in Figures
5(b), 5(c) and 5(d) to have several properties and artifacts. First, the
horizontal and vertical edges are very sharp. This is related to the
fact that the cross-bandlimiting filter retains all purely horizontal and
purely vertical frequencies. However, many of the diagonal edges
are blurry, and several ringing artifacts can be seen. Overall, the
images have a quilt-like texture, which seems to mimic the cross-
shaped geometry of our sampling and frequency support.

As verification of the sampling theorem, we also sampled the
image on an ns×ns Manhattan grid, which corresponds to sampling
every nth row and every nth column of the original image. This is
approximately 2n−1

n2 of the total number of pixels. We were able to
perfectly recover the filtered images using the method in Section 5.
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