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ABSTRACT
In parallel combinations of adaptive filters, the component filters are
usually run independently to be later on combined, leading to a stag-
nation phase before reaching a lower error. Conditional transfers of
coefficients between the filters have been introduced in an attempt to
address this issue. The present work proposes a more natural way of
accelerating the convergence to steady-state, using a cyclic feedback
of the overall weights to all component filters, instead of a unidi-
rectional conditional transfer. It is shown that, depending on the
cycle length, the resulting recursion is equivalent to either: (i) the
independent combination, (ii) a variable step size adaptive filter, or
(iii) a new hybrid algorithm. Comments on the universality of the
approach are presented along with a technique to design the cycle
length. Comparisons in stationary and non-stationary system identi-
fication scenarios demonstrate the superior performance of this new
combination method.

Index Terms— Convex combination, adaptive filters, coeffi-
cients feedback

1. INTRODUCTION

Combinations of adaptive filters (AFs) have been introduced as a
way to improve filtering performance when the accurate design of a
single filter is difficult [1–4]. This approach consists of aggregating a
set of AFs using a supervisor which attempts to achieve universality,
i.e., making the overall system at least as good—usually in the mean-
square sense—as the best filter in the set. Combinations with differ-
ent step sizes, orders, adaptive algorithms and supervising rules can
be found in [3–8]. In such schemes, the component filters run inde-
pendently while an adaptive mixing parameter merges their weights.
This structure presents a well-known convergence stagnation while
the mean-square-error (MSE) of the accurate filter does not become
smaller than that of the fast one. Different topologies [1] and condi-
tional transfers of coefficients [3,9] have been proposed to overcome
this problem.

In this paper the stagnation issue will be addressed by:

• Embedding a cyclic coefficients feedback in the combina-
tion (Fig. 1);

• Showing that for two least-mean-square filters (LMS), the cy-
cle length (L) can turn the combination into either a convex
LMS (CLMS) [3], a variable step size (VSS) algorithm or a hy-
brid of both;

• Proposing a method to design L;

• Comparing through simulations the performance of the new al-
gorithm to existing methods in the literature [1,3,9] for different
scenarios.

Fig. 1. Generalized parallel topology

2. PROBLEM FORMULATION

Under the widely adopted system identification scenario, the combi-
nation problem consists of finding a mixture of AFs weights which
leads to an estimate at least as good as any of the component filters
individually. Explicitly, given a pool of AFs

wn,i = wn,i−1 + μnpn (1)

in which wn,i is the Mn×1 weights estimate at iteration i of the nth

filter, μn is its step size and pn = −Bn∇∗J(wn,i−1), with Bn any
positive definite matrix, J(wn,i−1) the underlying cost function the
filter attempts to minimize and ∗ denoting the conjugate transpose, a
combination is defined as

wi−1 =

N∑
n=1

λn(i)wn,i−1. (2)

The mixing parameter λn(i) aggregates the estimates according
to supervising rules and constraints defined by the combination strat-
egy adopted. Generally, the overall MSE E|e(i)|2 is minimized, un-
der the constrain

∑
λn(i) = 1. The overall error e(i) = d(i)−y(i)

is defined over the combination output y(i) = uiwi−1, where ui is
the 1 × M regressor vector1 that captures samples of an input sig-
nal with variance σ2

u, and d(i) = uiw
o + v(i) is the desired signal,

in which v(i) is an independent and identically distributed (i.i.d.)
noise with variance σ2

v , and wo is an M × 1 vector that models the
unknown plant. For the individual filters, en(i) = d(i)− yn(i) and
yn(i) = uiwn,i−1.

1To account for different filters’ orders, M = maxn Mn, filling up the
vectors with zeros whenever necessary to match the dimensions [5, 6].
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For N = 2 and M1 = M2 = M , an approach which has gained
a lot of attention in the last years is the convex combination of two
independent AFs [3, 7], in which (2) reduces to

wi−1 = λ(i)w1,i−1 + (1− λ(i))w2,i−1, (3)

and λ ∈ [0, 1]. In order to guarantee this last constraint and reduce
gradient noise when λ ≈ 0 or λ ≈ 1, an activation function is used2

λ(i) � 1

1 + e−a(i−1)
,

where the auxiliary variable a(i) is adapted as [3]

a(i) = a(i− 1) + μae(i)[y1(i)− y2(i)]λ(i)[1− λ(i)], (4)

and limited to [−a+, a+] so as not to stall the adaptation.
A detailed study of the convex combination strategy using two

LMS filters with different step sizes is carried out in [3]. Fig. 2
depicts the excess mean-square-error (EMSE = E|ui(w

o−wi−1)|2)
for a typical example employing μ1 = 0.07, μ2 = 0.007, μa =
1000, σ2

u = 1, and σ2
v = 10−3, averaged over 200 realizations.
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Fig. 2. EMSE of LMS filters and their convex combination

Despite the clear advantage of the CLMS over its components,
the combination is most of the time ignoring one of the AFs, lead-
ing to a convergence stagnation as soon as the faster filter reaches
steady-state. The combination must then hold until the accurate filter
catches up to commute due to their parallel-independent operation.

Different schemes have been proposed in the literature to over-
come the aforementioned effect: conditional transfer of coefficients
from faster to slower filter are explored in [3,9]; and series topology,
inspired by incremental-cooperative strategies, is proposed in [1].

2.1. Conditional transfer of coefficients

Transfer of coefficients has been studied for the two LMS case in
an attempt to improve the convergence of the smaller step size AF
by leaking the faster filter weights into its recursion. However, this
leakage degrades the steady-state performance of the combination,
increasing the misadjustment of the slower filter. Therefore, it must
only occur under specific conditions, usually when λ(i) ≥ β, with
β close to the maximum value of λ(i)—e.g. β = 0.98. Assuming
filter 1 is faster, the second AF recursion becomes [3, 9],

w2,i = α[w2,i−1 + μ2u
∗
i e2(i)] + (1− α)w1,i−1, (5)

in which α is a parameter close to 1.
This method effectively addresses the stagnation problem, al-

though it presents a few downsides from a practical implementation

2For general activation functions and hierarchical combinations refer to
[5, 6].

point of view. First, it requires a conditional test on every iteration.
Second, it only implements a unidirectional transfer—i.e., from fil-
ter 1 to filter 2—, while there is no guarantee that in real scenarios
filter 1 will always be the faster one—e.g., non-stationary or low
signal-to-noise ratio (SNR) environments.

2.2. Parallel structure with cyclic feedback

In order to improve the results obtained with the method in sec-
tion 2.1, while avoiding its implementation issues, a cyclic feedback
approach is proposed as an alternative to transferring coefficients. In
this approach, the overall estimate (2) is fed back to the component
AFs every L iterations—the cycle length—, providing all of them
with the best weights estimate available at that time (Fig. 1). There-
fore, wn,i−1 in (1) becomes

wn,i−1 = δ(i− kL)wi−1 + (1− δ(i− kL))wn,i−1, (6)

where wi−1 is given by (2), δ(i) is the Kronecker delta, and k ∈ N.
Conceptually, this new algorithm is more natural than the one

proposed in Section 2.1, given that it provides all filters with the
global weights, explicitly chosen to minimize a function of the over-
all error—e.g. MSE. Additionally, the feedback is neither directional
nor limited to any two filters, so that all components can take advan-
tage of the overall coefficients. Still in the theoretical front, sec-
tion 3 will show that this method bridges a gap between combina-
tions of AFs of the same kind and VSS techniques. In terms of im-
plementation, this structure also brings advantages since it depends
uniquely on counters and allows efficient interruption-based algo-
rithms. Lastly, simulations will show that it can outperform other
combinations in different scenarios (Section 4).

3. A BRIEF ON ANALYSIS

In order to illustrate the idea, we restrict the sections to follow to
the combination of two LMS for white real-valued Gaussian inputs.
With n = 1,2, M1 = M2 = M , the complete algorithm is

λ(i) =
1

1 + e−a(i−1)

a(i) = a(i− 1) + μae(i)[y1(i)− y2(i)]λ(i)[1− λ(i)]

wn,i−1 = δ(i− kL)wi−1 + (1− δ(i− kL))wn,i−1

wn,i = wn,i−1 + μnu
∗
i (d(i)− uiwn,i−1).

(7)

Algorithm (7) shows that depending on the choice of the cycle
length it is possible to (i) recover the CLMS from [3]; (ii) devise a
VSS algorithm; or (iii) formulate a new algorithm:

(i) For L → ∞ in (6), δ(i− kL) = 0 for all finite i and the equa-
tion reduces to wn,i−1 = wn,i−1. This makes the component
filters operate independently and is equivalent to eliminating
the feedback branch in Fig. 1, leading to the CLMS [3].

(ii) However, if L = 1, (6) becomes wn,i−1 = wi−1, as if the
feedback loop in Fig. 1 was continuously enabled. Using this
result in (7) and substituting in (3) yields

wi = wi−1 + μ(i)u∗
i (d(i)− uiwi−1), (8)

with μ(i) � λ(i+1)μ1+[1−λ(i+1)]μ2. Note that μ(i) is an
iteration dependent convex association of μ1 and μ2, leading
to a VSS variant of the LMS recursion.

(iii) Finally, choosing any finite L > 1 gives rise to a new adaptive
algorithm that will present a hybrid operation, acting as in (ii)
for i = kL and as in (i) for all other i.
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3.1. Comments on universality

A celebrated result for the convex combination is that it may achieve
(nearly) universality in steady-state [3]. Since the fCLMS of case
(iii) will, at each instant, be identical to either the CLMS or the VSS
algorithm (8), suffices to show that the latter is universal to make
fCLMS with arbitrary L universal as well.

With no loss of generality, μ1 > μ2 and λ(i+1) = 0 makes (8)
identical to the recursion of the smaller step size filter. Therefore,
since σ2

a tends to be negligible [7,9], as long as E a(∞) → −∞ the
overall MSE at steady-state will be that of the best of the component
filters, which follows from similar arguments as presented in [3].

In summary, both cases (i) and (ii) can be shown to be capable
of universality. Since (iii) is at each instant equivalent to any one of
them, universality follows.

3.2. Design of the cycle length

Section 3.1 showed that the combination converges to the MSE of
the best AF regardless the choice of L. However, due to the nature
of the adaptation of λ, it may take a long time, especially for small
L. This phenomenon is easier understood by looking at (4) and ob-
serving that the recurrence on a depends upon [y1(i) − y2(i)] =
ui(w1,i−1 − w2,i−1). Although w1,i−1 �= w2,i−1, their difference
can be expected to be small after a feedback, when e1(i) = e2(i),
resulting in slower updates of λ. However, it is unwise to take L to
be as large as desired because then the component filters will not be
able to take advantage of the overall estimation.

A method is then proposed to design the cycle length L based
on the idea that, in a stationary scenario, the overall w should be fed
back as soon as the faster filter stops converge, therefore supplying
the slower filter with the best estimate the combination can provide
at that time. To do so, a linear approximate model for the MSE
convergence in dB is adopted (see Fig. 3). This model can then be
used to find an approximate point where the faster filter slows down,
leading to an estimate for L.

Starting from the weighted variance relation with independence
for AFs of the form wi = wi−1+μu∗

i [g(ui)]
−1e(i) [10, Thm.22.4],

E‖w̃i‖2Γ = E‖w̃i−1‖2Γ′ + μσ2
vE

(
uiΓu

∗
i

g2(ui)

)

Γ′ = Γ− μΓE(ν)− μE(ν)Γ + μ2
E(νΓν)

(9)

where w̃i = wo − wi, ν = u∗
i ui[g(ui)]

−1, ‖x‖2A = x∗Ax and
Γ is any Hermitian positive semi-definite matrix. Under the initial
assumption that ui is white, real-valued and Gaussian, Eu∗

i ui =
σ2
uI , with I the identity matrix. Choosing Γ = I and g(ui) =

1 for LMS, E(ν) = σ2
uI , E(uiΓu

∗
i ) = σ2

uM , and E(νΓν) =
σ2
uTr(σ2

uI)I + 2σ4
uI = σ4

u(M + 2)I . Defining γ = 1 − 2μσ2
u +

μ2σ4
u(M + 2) and from (9), by induction one gets

E‖w̃i−1‖2 = γi
E‖wo‖2 + μσ2

vσ
2
uM

i−1∑
k=0

γk
. (10)

Assuming small step sizes and high SNR, a coarse approxima-
tion for (10) is3 E‖w̃i−1‖2 = γiE‖wo‖2. Since e(i) = uiw̃i−1 +
v(i), MSEdB(i) = 10 log(E|e(i)|2) = 10 log(σ2

uE‖w̃i−1‖2 +
σ2
v) ≈ 10 log(σ2

uE‖w̃i−1‖2). Furthermore, using the data model,
σ2
u‖wo‖2 = σ2

d − σ2
v , and the linear MSEdB model becomes

MSEdB(i) = 10i log γ + 10 log[σ2
d − σ2

v], (11)

3For stable LMS filters [10] 0 � γ < 1.

which takes on the form r(i) = a.i + b with a = 10 log γ and
b = 10 log[σ2

d − σ2
v].

With (11), L is estimated via r(L) = 10 log MSE(∞), where
MSE(∞) = 2σ2

v(1 − μσ2
u)/[2 − μ(M + 2)σ2

u] [10, Ch. 16]. As
it will be shown in Section 4, the algorithm is robust with respect to
L, which supports the aforementioned approximations. Moreover, it
means that no accurate estimates for σ2

v are required.

4. SIMULATIONS

This section presents simulations to compare the behavior of CLMS,
CLMS with transfer of coefficients (CLMS2), series topology and
fCLMS. The approach taken here is to design the fCLMS once and
then test it under different scenarios. All parameters were chosen
as in [9]: σ2

u = 1, σ2
v = 10−2 (SNR = 20dB), μ1 = 0.05,

μ2 = 0.005, μfCLMS
a = 600, μCLMS

a = 200, μCLMS2
a = 100,

α = 0.9535, a+ = 4, and M = 7. For the series topology, the
INC-COOP1 with simple design was used with the same configura-
tions as [1], but with the step sizes above. All figures show curves
averaged over 1000 runs with a normalized randomly generated wo.

The model (11) is tested in a high SNR/small step size scenario—
μ = 0.01, σ2

v = 10−4—and in the one presented above—μ = μ1,
σ2
v = 10−2—, concurring with the simulations results (Fig. 3). For

the adopted framework only, assessments of the convergence time
for different cycle lengths were made (Fig. 4), showing the accuracy
and robustness of the design method from section 3.2.
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Adopting L = 60, Fig. 5 depicts the filters in a stationary envi-
ronment. The superior performance of series topology and fCLMS
is clear, notably during the transient part, where the stagnation prob-
lem was definitely overcome. Note that the efficiency of the series
strategy is due to its mixing parameter design method, adequate only
for stationary scenarios [1]. When the same λ is applied to fCLMS
with L = 1, both structures present undistinguishable results. Fig. 6
illustrates the filters behavior. Note the cyclic “stationarity” on the
component filters produced by the feedback.

Following, results under non-stationary scenarios are repro-
duced in Fig. 7 and Fig. 8 for abrupt changes in wo and time-varying
systems, respectively. In the first figure, the series algorithm is left
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out for clarity since it performs worst due to the lack of a more
robust adaptation rule. In the second plot, the Mean Square Devi-
ation (MSD(i) = E‖w̃i−1‖2) is showed for a random-walk model
wo

i = wo
i−1+ q(i), with q a M ×1 i.i.d. zero-mean Gaussian vector

with covariance matrix σ2
qI and σ2

q = 10−4. In this case, all AFs
performed equally, except for the series topology.

In summary, the key point is the fCLMS robustness: it is able to
either outperform or match existing algorithms in different scenarios
with one simple design. Performance could be improved in each
scenario with specific tuning.

5. CONCLUSION

A novel scheme to overcome the stagnation problem of parallel-
independent combinations was proposed by embedding cyclic coef-
ficients feedbacks in the topology, a more natural way of reusing the
AFs weights than conditional transfers. A case study for two LMS
filters was used to illustrate this method, where the structure was
showed to be equivalent to a CLMS, a VSS algorithm or a hybrid AF,
depending on the cycle length L. A method to design this parameter
was developed based on a transient model for LMS and validated.
Simulations showed that the new algorithm can outperform CLMS,
transfer of coefficients and series topology under different scenarios.
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Fig. 6. Component filters behavior for L = 60
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