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ABSTRACT
We investigate affinely constrained mixture methods adap-
tively combining outputs of m constituent filters running
in parallel to model a desired signal. We use Bregman
divergences and obtain multiplicative updates to train these
linear combination weights under the affine constraints.
We use the unnormalized relative entropy and the relative
entropy that produce the exponentiated gradient update with
unnormalized weights (EGU) and the exponentiated gradient
update with positive and negative weights (EG), respectively.
We carry out the mean and the mean-square transient anal-
ysis of the affinely constrained mixtures of m filters using
the EGU or EG algorithms. We compare performances of
different algorithms through our simulations and illustrate
the accuracy of our results.

I. INTRODUCTION

We study mixture methods based on Bregman divergences
that adaptively combine outputs of adaptive filters running
in parallel to model a desired signal. The overall system has
two stages. The first stage contains adaptive filters running
in parallel to model a desired signal. In the second stage, the
outputs of these adaptive filters are linearly combined to pro-
duce the final output of the overall system. We use Bregman
divergences and obtain multiplicative updates [1] to train
these linear combination weights under affine constraints
[2]. As Bregman divergences, we use the unnormalized
relative entropy and the relative entropy [1] that produce the
exponentiated gradient update with unnormalized weights
(EGU) and the exponentiated gradient update with positive
and negative weights (EG), respectively. We emphasize that
to the best of our knowledge, this is the first mean and
mean-square transient analysis of the affinely constrained
of m filters using the EGU or EG algorithms in the mix-
ture framework (which also naturally covers unconstrained
mixtures and the classical approach [3]). We illustrate the
accuracy of our analysis in our simulations and demonstrate
advantages of these algorithms for sparse mixture systems.

Adaptive combination methods are used in order to im-
prove the steady-state and/or convergence performance over
the constituent algorithms [2], [4], [5]. Affine combination

of adaptive filters is studied in [2], where it is shown that
the mean-square deviation of the affine combination can be
made less than the mean-square deviation of the constituent
filters in certain situations. The transient analysis of the affine
combinations is carried out in [6].

Unlike the previous approaches to train the mixture
weights, we use the family of EG algorithms here which
are shown to converge faster than the LMS algorithm when
the system impulse response is sparse, e.g., in network and
acoustic echo cancellation problems [7]. Similarly, in our
simulations, we observe that using the EG algorithm to train
the mixture weights yields better performance compared to
using the LMS algorithm to train the mixture weights for
the combinations having more than 2 filters and when the
combination favors only a few of the constituent filters.

The organization of the paper is as follows. In Section II,
we first describe the mixture framework for the combination
of adaptive filters. In Section III, we study the affinely
constrained mixture methods with the EGU and EG algo-
rithms. In Section IV, we perform the transient analysis of
the affinely constrained mixtures using the EGU and EG
algorithm. Finally, in Section V, we perform simulations
to show the accuracy of our results and to compare the
performances of the different algorithms

II. SYSTEM DESCRIPTION

The framework that we study has two stages1. In the first
stage, we have m adaptive filters producing outputs ŷi(t),
i = 1, . . . ,m, running in parallel to model a desired signal
y(t) as seen in Fig. 1. The second stage is the mixture stage
where the outputs of the first stage filters are combined
to improve either steady-state or transient and/or tracking
performance over the constituent filters. We linearly combine

1In this paper, all vectors are column vectors and represented by boldface
lowercase letters. Matrices are represented by boldface capital letters. Given

a vector w, w(i) denotes the ith individual entry of w, ‖w‖ �
=

√
wTw is

the l2 norm. For a vector w, diag(w) represents a diagonal matrix formed
using the entries of w. For a matrix W , diag(W ) represents a column
vector that contains the diagonal entries of W . For two vectors v1 and v2,

we define the concatenation [v1; v2]
�
= [vT

1 vT

2 ]T . For a random variable
v, v̄ is the expected value. Vectors (or matrices) 1 and 0, with an abuse
of notation, denote vectors (or matrices) of all ones or zeros, respectively,
where the size of the vector (or the matrix) is understood from the context.
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Fig. 1. A linear mixture of outputs of m adaptive filters.

the outputs of the first stage filters to produce the final

output ŷ(t) = wT (t)x(t), where x(t)
�
= [ŷ1(t), . . . , ŷm(t)]T

and train the mixture weights using multiplicative updates
(or exponentiated gradient updates). We point out that in
order to satisfy the constraints and derive the multiplicative
updates, we use reparametrization of the mixture weights as
w(t) = f(z(t)) and perform the update on z(t) as

z(t+ 1) = argmin
z

{
d(z, z(t)) + μ l

(
y(t),fT (z)x(t)

)}
,

(1)
where μ is the learning rate of the update, d(·, ·) is an
appropriate distance measure and l(·, ·) is the instantenous
loss. We emphasize that in (1), the updated vector z is
forced to be close to the present vector z(t) by d(z(t +
1), z(t)), while trying to accurately model the current data
by l

(
y(t),fT (z)x(t)

)
. However, instead of directly mini-

mizing (1), a linearized version of (1)

z(t+ 1) = argmin
z

{
d(z, z(t)) + l

(
y(t),fT (z(t))x(t)

)
(2)

+ μ∇z l
(
y(t),fT (z)x(t)

)T ∣∣∣
z=z(t)

(z − z(t))

}

is minimized to get the desired update.
In the next section, we use the unnormalized relative

entropy

d(z, z(t)) =

{ m∑
i=1

[
z(i) ln

(
z(i)

z(i)(t)

)
+ z(i)(t)− z(i)

]}

(3)
for positively constrained z and z(t), z ∈ �m

+ , z(t) ∈ �m
+

and the relative entropy

d2(z, z(t)) =

{ m∑
i=1

[
z(i) ln

(
z(i)

z(i)(t)

)]}
(4)

where z is constraint to be in an extended simplex such
that z(i) ≥ 0,

∑m

k=1 z
(i) = u for some u ≥ 1 as the

distance measures, with appropriately selected f(·) to derive
updates on mixture weights under different constraints. We
now investigate affinely constrained mixture of m adaptive
filters using (3) and (4) as the distance measures.

III. AFFINELY CONSTRAINED MIXTURE

In this section, we investigate the affinely constrained
mixture updated with the EGU and EG algorithms.

When an affine constraint is imposed on the mixture such
that wT (t)1 = 1, we get

ŷ(t) = w(t)Tx(t), e(t) = y(t)− ŷ(t),

w(i)(t) = λ(i)(t), i = 1, . . . ,m− 1,

w(m)(t) = 1−
m−1∑
i=1

λ(i)(t),

where the m − 1 dimensional vector λ(t)
�
=

[λ(1)(t), . . . , λ(m−1)(t)]T is the unconstrained weight vector,
i.e., λ(t) ∈ �m−1. Using λ(t) as the unconstrained weight
vector, the error can be written as e(t) =

[
y(t)− ŷm(t)

]
−

λT (t)δ(t), where δ(t)
�
= [ŷ1(t) − ŷm(t), . . . , ŷm−1(t) −

ŷm(t)]T . To be able to derive a multiplicative update on
λ(t), we use λ(t) = λ1(t)− λ2(t), where λ1(t) and λ2(t)
are constrained to be nonnegative, i.e., λi(t) ∈ �

m−1
+ ,

i = 1, 2. After we collect unconstrained weights in
λa(t) = [λ1(t);λ2(t)], we define a function of loss e(t) as

la (λa(t))
�
= e2(t) and update positively constrained λa(t)

as follows.
Unnormalized Relative Entropy: Using the unconstrained
relative entropy as the distance measure, we obtain

λ(i)
a (t+ 1) = λ(i)

a (t) exp {μe(t)(ŷi(t)− ŷm(t))} , (5)

i = 1, . . . ,m− 1,

λ(i)
a (t+ 1) = λ(i)

a (t) exp {−μe(t)(ŷi(t)− ŷm(t))} , (6)

i = m, . . . , 2(m− 1),

providing the multiplicative updates on λ1(t) and λ2(t).
Relative Entropy: Using the relative entropy as the distance

measure, defining r(i)(t)
�
= exp {μe(t)(ŷi(t)− ŷm(t))} and

h(i)(t)
�
= exp {−μe(t)(ŷi(t)− ŷm(t))}, we obtain

λ
(i)
a (t+ 1) =

uλ
(i)
a (t)r(i)(t)∑

m−1
k=1

[
λ
(k)
a (t)r(k)(t) + λ

(k+m−1)
a (t)h(k)(t)

] ,
(7)

i = 1, . . . ,m− 1,

λ
(i)
a (t+ 1) =

uλ
(i)
a (t)h(i)(t)∑

m−1
k=1

[
λ
(k)
a (t)r(k)(t) + λ

(k+m−1)
a (t)h(k)(t)

] ,
(8)

i = m, . . . , 2(m− 1),

providing the multiplicative updates on λa(t).
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IV. TRANSIENT ANALYSIS

In this section, we first perform transient analysis of the
mixture weights updated using the unconstrained relative
entropy. Then, we continue with the transient analysis of
the mixture weights updated using the relative entropy.
Unnormalized Relative Entropy: For the affinely con-
strained combination updated with the EGU algorithm, we
have multiplicative updates (5) and (6). If e(t) and ŷi(t) −
ŷm(t) for each i = 1, . . . ,m− 1 are bounded, then we can
write (5) and (6) as

λ
(i)
1 (t+ 1) = λ

(i)
1 (t)

(
1 + μe(t)(ŷi(t)− ŷm(t)) +O(μ2)

)
, (9)

λ
(i)
2 (t+ 1) = λ

(i)
2 (t)

(
1− μe(t)(ŷi(t)− ŷm(t)) +O(μ2)

)
, (10)

for i = 1, . . . ,m− 1, and since μ is small, we approximate
(9) and (10) and obtain updates on λ1(t) and λ2(t) as

λ1(t+ 1) =
(
I + μe(t)diag

(
δ(t)

))
λ1(t), (11)

λ2(t+ 1) =
(
I − μe(t)diag

(
δ(t)

))
λ2(t). (12)

Now, collecting the weights in λa(t) = [λ1(t);λ2(t)], using
the updates (11) and (12), we can write update on λa(t) as

λa(t+ 1) =
(
I + μe(t)diag

(
u(t)

))
λa(t) (13)

where u(t) is defined as u(t)
�
= [δ(t);−δ(t)].

For any desired signal y(t), we can write y(t)− ŷm(t) =
λT
0 (t)δ(t)+e0(t), where λ0(t) is the optimum solution such

that λ0(t) = R−1(t)p(t), R(t) and p(t) are defined as

R(t)
�
= E

[
δ(t)δT (t)

]
and p(t) = E

{
δ(t)

[
y(t)− ŷm(t)

]}
and e0(t) is zero-mean disturbance and uncorrelated to
δ(t). We next show that the mixture weights converge
to the optimum solution in the steady-state such that
limt→∞ E

[
λ(t)

]
= limt→∞ λ0(t).

Subtracting (12) from (11), we obtain

λ(t+1) = λ(t)−μe(t)diag
(
δ(t)

)
λ(t)+2μe(t)diag

(
δ(t)

)
λ1(t).

(14)

Defining ε(t)
�
= λ0(t)−λ(t), using e(t) = δT (t)ε(t)+e0(t)

and subtracting both sides from λ0(t+ 1) in (14) yields

ε(t+ 1) = ε(t) + μdiag
(
δ(t)

)
λ(t)δT (t)ε(t)

+ μdiag
(
δ(t)

)
λ(t)e0(t)− 2μdiag

(
δ(t)

)
λ1(t)δ

T (t)ε(t)

− 2μdiag
(
δ(t)

)
λ1(t)e0(t) +

[
λ0(t+ 1)− λ0(t)

]
. (15)

Taking expectations of both sides, we get
E
[
μdiag

(
δ(t)

)
λ(t)e0(t)

]
= 0, E

[
μdiag

(
δ(t)

)
λ1(t)e0(t)

]
=

0. Assuming that λ1(t) and λ2(t) are independent of ε(t)
yields

E
[
ε(t+ 1)

]
= E

[
I − μdiag

(
λ1(t) + λ2(t)

)
δ(t)δT (t)

]
E
[
ε(t)

]
+ E

[
λ0(t+ 1)− λ0(t)

]
. (16)

Since for a wide range of adaptive methods used in the
first stage R(t) and p(t) are convergent [4],[3], we obtain
limt→∞ E

[
λ0(t+1)−λ0(t)

]
= 0. If μ is chosen such that

the eigenvalues of E
[
I − μdiag

(
λ1(t) + λ2(t)

)
δ(t)δT (t)

]
have strictly less than unit magnitude for every t, then
limt→∞ E

[
λ(t)

]
= limt→∞ λ0(t).

For the transient analysis of mean-square error, we have

E[e2(t)] = E
{[

y(t)− ŷm(t)
]2}

− 2λ̄
T

a (t)γ(t)

+ tr

(
E
[
λa(t)λ

T

a (t)
]
Γ(t)

)
, (17)

where we define γ(t)
�

= E
{
u(t)

[
y(t)− ŷm(t)

]}
and Γ(t)

�

=

E
[
u(t)uT (t)

]
.

For the recursion of λ̄a(t) = E[λa(t)], using (13), we get

λ̄a(t+ 1) = λ̄a(t) + μdiag
(
γ(t)

)
λ̄a(t)

−μdiag
(
E[λa(t)λ

T

a (t)]Γ(t)
)
. (18)

Again using (13), assuming λa(t) is Gaussian and assuming
λ
(i)
a (t) and λ

(j)
a (t) are independent when i �= j, we have a

recursion for E
[
λa(t)λ

T
a (t)

]
as

E
[
λa(t+ 1)λT

a (t+ 1)
]
=(

I + μdiag
(
γ(t)

)
− μdiag

(
Γ(t)λ̄a(t)

))
E[λa(t)λ

T

a (t)]

− μE
[
diag2(u(t))

](
E
[
λa(t)λ

T

a (t)
]
− λ̄a(t)λ̄

T

a (t)

)
1λ̄

T

a (t)

− μdiag
(
λ̄a(t)

)
Γ(t)

(
E
[
λa(t)λ

T

a (t)
]
− λ̄a(t)λ̄

T

a (t)

)

E[λa(t)λ
T

a (t)]

(
μdiag

(
γ(t)

)
− μdiag

(
Γ(t)λ̄a(t)

))

− μλ̄a(t)1
T

(
E
[
λa(t)λ

T

a (t)
]
− λ̄a(t)λ̄

T

a (t)

)
E
[
diag2(u(t))

]
− μ

(
E
[
λa(t)λ

T

a (t)
]
− λ̄a(t)λ̄

T

a (t)

)
Γ(t)diag

(
λ̄a(t)

)
. (19)

Hence, we have the mean and the variance recursions in
(18) and (19) respectively. We use (18) and (19) in (17)
and obtain the time evolution of MSE. This completes the
transient analysis for the unconstrained relative entropy.
Relative Entropy: For the affinely constrained combination
updated with the EG algorithm, we have multiplicative
updates (7) and (8). Using the same approximations as in
(9), (10), (11) and (12), we can obtain update on λa(t) as

λa(t+ 1) = u

[
I + μe(t)diag

(
u(t)

)]
λa(t)[

1
T + μe(t)uT (t)

]
λa(t)

. (20)

For the recursion of λ̄a(t), using (20), we get

E
[
λa(t+ 1)

]
= E

{
u

[
I + μe(t)diag

(
u(t)

)]
λa(t)[

1
T + μe(t)uT (t)

]
λa(t)

}
,

≈ u

{
I + μdiag

(
γ(t)

)}
E
[
λa(t)

]
− μdiag

(
E[λa(t)λ

T

a (t)]Γ(t)
)

[
1
T + μγT (t)

]
E
[
λa(t)

]
− μtr

(
E[λa(t)λ

T

a (t)]Γ(t)
) .

(21)

From (20), using the same approximation in (21), assuming
λa(t) is Gaussian, assuming λ

(i)
a (t) and λ

(j)
a (t) are indepen-

dent when i �= j, we have a recursion for E
[
λa(t)λ

T
a (t)

]
as

E
[
λa(t+ 1)λT

a (t+ 1)
]
= u

2A(t)

b(t)
, (22)
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where the numerator A(t) is the right hand side of (19) and
the denominator

b(t) = 1
T
E
[
λa(t)λ

T

a (t)
]
1+ μγ

T (t)E
[
λa(t)λ

T

a (t)
]
1

− μλ̄
T

a (t)Γ(t)E
[
λa(t)λ

T

a (t)
]
1

− μ1
T

(
E
[
λa(t)λ

T

a (t)
]
− λ̄a(t)λ̄

T

a (t)

)
Γ(t)λ̄a(t)

− μ1
T

(
E
[
λa(t)λ

T

a (t)
]
− λ̄a(t)λ̄

T

a (t)

)
E
[
diag2(u(t))

]
1
T
λ̄a(t)1

+ μ1
T
E
[
λa(t)λ

T

a (t)
]
γ(t)− μ1

T
E
[
λa(t)λ

T

a (t)
]
Γ(t)λ̄a(t)

− μλ̄
T

a (t)Γ(t)

(
E
[
λa(t)λ

T

a (t)
]
− λ̄a(t)λ̄

T

a (t)

)
1

− μ1
T
λ̄

T

a (t)1E
[
diag2(u(t))

](
E
[
λa(t)λ

T

a (t)
]
− λ̄a(t)λ̄

T

a (t)

)
1.

(23)

We next use the mean (21) and the variance (22), (23)
recursions in (17) and obtain the time evolution of MSE.

V. SIMULATIONS

In this section, we illustrate the accuracy of our results and
compare performances of different mixture methods through
simulations.

To show accurateness of our results in (21), (22) and
(23), the desired signal as well as the system parameters are
selected as follows. First, a seventh-order linear filter, wo =
[0.25,−0.47,−0.37, 0.045,−0.18, 0.78, 0.147]T , is chosen
[6]. The underlying signal is generated using the data model
y(t) = τ wT

o a(t) + n(t), where a(t) is an i.i.d. Gaussian
vector process with zero mean and unit variance entries, i.e.,
E[a(t)aT (t)] = I , n(t) is an i.i.d. Gaussian noise process
with zero mean and variance E[n2(t)] = 0.3, and τ is a
positive scalar to control SNR. For the first experiment, we
choose SNR = -10dB. We select the constituent filters such
that we have 10 linear filters all using the LMS update
to train their weight vectors and the learning rates for 2
constituent filters are set to μi = 0.002, i = 1, 6 while the
learning rates for the LMS updates for the rest of constituent
filters are selected randomly [0.1, 0.11]. Therefore, in the
steady-state, we obtain the optimum combination vector as
approximately λo = [0.5, 0, 0, 0, 0, 0.5, 0, 0, 0, 0]T , i.e., the
final combination vector is sparse. In the second stage,
we train the combination weights with the EG and LMS
algorithms and compare performances of these algorithms.
We use the EG algorithm instead of the EGU algorithm
because we observe that the EG algorithm performs better
than the EGU algorithm in our simulations. For the second
stage, the learning rates for the EG and LMS algorithms
are selected as μEG = 0.001 and μLMS = 0.005 such that
the MSEs of the final output produced with both algorithms
converge to the same MSE, hence we can fairly compare
the performances of these algorithms. In Fig. 2, we plot
the MSE curves for the adaptive mixture updated with the
EG algorithm, the adaptive mixture updated with the LMS
algorithm, first constituent filter with μ1 = 0.002 and second
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Fig. 2. MSE curves for the adaptive mixture updated with
the EG algorithm, the adaptive mixture updated with the
LMS algorithm, first constituent filter with μ1 = 0.002 and
second constituent filter with μ2 = 0.1 are plotted.

constituent filter with μ2 = 0.1, where the MSE of the
final output using the EG algorithm on the mixture weights
converges faster than the MSE of the final output using the
LMS algorithm on the mixture weights.

VI. CONCLUSION

In this paper, we investigated adaptive affine mixture
methods based on Bregman divergences and provided the
transient analysis of these methods using the EGU and EG
algorithms. In our simulations, we compared performances
of the EG and LMS algorithms and observed that the EG
algorithm performs better than the LMS algorithm when the
combination vector in steady-state is sparse. We observed
that the MSE of the final output using the EG algorithm
on the mixture weights converges faster than the MSE of
the final output using the LMS algorithm on the mixture
weights. We also observed a close agreement between our
simulations and theoretical results.
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