
AN ESTIMATOR FOR THE EIGENVALUES OF THE SYSTEM MATRIX OF A
PERIODIC-REFERENCE LMS ALGORITHM

Tuomas Haarnoja and Kari Tammi

VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland

firstname.lastname@vtt.fi

Kai Zenger

Aalto University, School of Electrical Engineering
P.O. Box 15500, FI-00076 Aalto, Finland

kai.zenger@aalto.fi

ABSTRACT

The convergence analysis of the Least Mean Square (LMS)

algorithm has been conventionally based on stochastic sig-

nals and describes thus only the average behavior of the algo-

rithm. It has been shown previously that a periodic-reference

LMS system can be regarded as a linear time-periodic sys-

tem whose stability can be determined from the monodromy

matrix. Generally, the monodromy matrix can only be solved

numerically and does not thus reveal the actual factors behind

the dynamics of the system. This paper derives an estimator

for the eigenvalues of the monodromy matrix. The estimator

is easy to calculate, and it also reveals the underlying reason

for the bad convergence of the LMS algorithm in some spe-

cial cases. The estimator is confirmed by comparing it to the

precise eigenvalues of the monodromy matrix. The estimator

is found to be accurate for the eigenvalues close to unity.

Index Terms— LMS algorithm, monodromy matrix, es-

timator for the eigenvalues, convergence rate

1. INTRODUCTION

Although the basis of the Least Mean Square (LMS) algo-

rithm was discovered already in 1960’s [1, 2], the conver-

gence analysis of it is still not completely understood. Most

of the approaches rely on the independence assumption pro-

posed in [3], which states that consecutive reference vectors

do not correlate. This assumption has been successfully

used in a variety of theoretical studies to derive stability and

convergence conditions in the presence of stochastic signals

(e.g [4, 5]). However, when the reference signal is peri-

odic, the independence assumption is not justified, and it

ultimately results in unstable operation of the controller. On

the other hand, the periodic reference enables the usage of

precise, deterministic analysis tools. For example, Glover

[6] found that when the reference signal consists of a single

sinusoid, the LMS system can be written as a sum of a Linear

Time-Invariant (LTI) and Linear Time-Varying (LTV) trans-
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fer function. Similar results were obtained in [7], and in [8]

the method was extended to cover a multi-frequency case.

Later, Tammi et al. [9] derived an exact time-periodic

state-space representation for the algorithm in the case of

periodic reference. The work was continued in [10], where

a state-space representation for the Filtered-x LMS (FxLMS)

algorithm with a full linear plant model (also known as

the secondary path) was introduced. The drawback of the

method is, however, that the obtained state-space represen-

tation is over-large because of the existence of numerous

non-controllable and non-observable states. Although these

methods are able to predict the possible problem in the con-

vergence of the filter, they still cannot point out the actual

reasons for it.

This paper uses a more sophisticated time-periodic state-

space representation for the LMS algorithm with a periodic

reference signal. The new representation is fully observable

and controllable. By assuming a slowly converging system,

an approximation for the eigenvalues can be derived. The ap-

proximation does not require heavy computing effort and it

reveals the reason for the possible problems in convergence

as well as lets us approximately calculate the required con-

vergence coefficient when the magnitude of the eigenvalues

are specified. The precise LMS model is then used to calcu-

late the exact eigenvalues in several cases, and the values are

compared to the ones given by the estimator.

2. STATE-SPACE REPRESENTATION OF AN LMS
SYSTEM

Fig. 1 shows a block diagram of the LMS algorithm. With

the definitions

w(n) =
[
w0(n) . . . wN (n)

]T
(1a)

r(n) =
[
r0(n) . . . rN (n)

]T
, (1b)
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Fig. 1. A block diagram for the LMS filter. The reference

signal is a vector whose entries are independent from each

other.

where N + 1 is the number of filter taps, the dynamics of the

system can be defined with

u(n) = rT(n)w(n) (2a)

e(n) = u(n) + d(n) (2b)

w(n+ 1) = w(n)− αr(n)e(n). (2c)

The notation used here is more general than conventionally

because ri(n)’s are considered to be independent reference

signals. The original LMS is a special case, in which ri(n)’s
are sampled from the same signal: ri(n) = r(n − i). It is

assumed throughout this paper that the reference vector is pe-

riodic. Therefore, the reference can be written as a sum of

sinusoids as

ri(n) =

M∑
j=1

Aij sin (ωjn+ φij) , (3)

where M is the total number of discrete frequencies in the

reference, and Aij and φij are the amplitude and the phase at

the normalized frequency of ωj . The period of the reference

is Tp, which is the smallest positive integer for which r(n +
Tp) = r(n).

The reference vector can be written in a matrix form as

r(n) = R0s(n), (4)

where

R0 =⎡
⎢⎣
A01 cos(φ01) A01 sin(φ01) . . . A0M sin(φ0M )

...
...

. . .
...

AN1 cos(φN1) AN1 sin(φN1) . . . ANM sin(φNM )

⎤
⎥⎦

(5)

and

s(n) =
[
sin(ω1n) cos(ω1n) . . . cos(ωMn)

]T
. (6)

With this notation, the system (2) can be written as

w(n+ 1) =
(
I− αR0s(n)s

T(n)RT
0

)
w(n), (7)

where d(n) is set to zero, because we are only interested in

the system matrix, and d(n) would appear as an input of the

system. This can be further modified if RT
0 R0 is invertible:

c(n+ 1) =
(
I− αs(n)sT(n)RT

0 R0

)
︸ ︷︷ ︸

A(n)

c(n), (8)

where c(n) = (RT
0 R0)

−1RT
0 w(n). The state vector c(n)

contains the same time-dependent information as w(n). This

will be shown in a later paper and is omitted from here for

brevity. The dimension of A(n) is 2M ×2M . Because A(n)
is periodic with the period of Tp, the convergence proper-

ties of the algorithm are fully described by the time-invariant

monodromy matrix

A =

Tp∏
n=1

A(n). (9)

The calculation of the eigenvalues of the monodromy matrix

(λA,i) is, however, time consuming, and it cannot be done an-

alytically in a general case. The next section will introduce

a simple approximation for the magnitude of these eigenval-

ues.

3. APPROXIMATION FOR THE EIGENVALUES OF
THE MONODROMY MATRIX

The aim is to find an estimate λ̃A,i for the eigenvalues λA,i.

Let us define λR,i as

RT
0 R0vi = λR,ivi, (10)

i.e. λR,i is the ith eigenvalue of R = RT
0 R0, and vi is the

corresponding eigenvector. All the vi’s are orthogonal, be-

cause R is symmetric. Now we can write

A(n)vi =
(
I− αλR,is(n)s

T(n)
)

︸ ︷︷ ︸
Ai(n)

vi, (11)

where

Ai(n) = I− αλR,is(n)s
T(n) (12)

is the ’directional’ system matrix into direction of the eigen-

vector vi. Let us assume that the system is in slow conver-

gence, i.e.
A(n)x ≈ μA(n)xx, (13)

for every x, where the value of the scalar μA(n)x depends

on both the matrix A(n) and the orientation of the vector x.

From (9), (11), and (13) we get

Avi ≈
Tp∏
n=1

μAi(n)vi
vi. (14)
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Fig. 2. The figure illustrates the projection of the 2M di-

mensional eigenspace of Ai(n) onto two dimensional plane

spanned by the vectors s(n) and x. The vector s⊥(n) is or-

thogonal to s(n). The gray circle is the unit circle, and the

black oval illustrates the locus obtained by multiplying the

unit circle by Ai(n). The dependencies on n are omitted for

simplicity.

The value of the product

Tp∏
n=1

μAi(n)vi
= λ̃A,i (15)

is thus the approximative eigenvalue we are searching for.

Let us now concentrate only on the directional system ma-

trix Ai(n) and try to find the estimate (15). One of the eigen-

vectors of Ai(n) is s(n):

Ai(n)s(n) = s(n)− αλR,is(n) s
T(n)s(n)︸ ︷︷ ︸

M

= (1− αλR,iM) s(n). (16)

Because Ai(n) is a symmetric matrix, the rest of the eigen-

vectors are perpendicular to s(n). Let us denote s⊥(n) ⊥
s(n) as any linear combination of these perpendicular vec-

tors. For s⊥(n) we get

Ai(n)s⊥(n) = s⊥(n)− αλR,is(n) s
T(n)s⊥(n)︸ ︷︷ ︸

=0

= s⊥(n), (17)

i.e. the eigenvalues corresponding to the other eigenvectors

are all 1.

This situation can be illustrated as in Fig. 2. The figure

shows a two dimensional plane of the eigenspace of Ai(n).
The plane is spanned by s(n) and an arbitrary vector x. The

vector s⊥(n) is selected so that it is perpendicular s(n) and

it lies on the same plane. The quarter of the gray circle is the

unit circle on the plane, and the part of the black oval shows

how the unit circle transforms when multiplied by Ai(n). The

goal is now to calculate the value of μAi(n)vi
. Let us consider

each component of vi(n) separately, i.e. let us calculate the

value of μAi(n)xj
, where xj =

[
δ1j δ2j δ3j . . .

]T
. The

angle between s(n) and vector xj is

cos(θj(n)) =
s(n) · xj

‖s(n)‖2 ‖xj‖2
=

sin(nωj + φj)√
M

, (18)

where φj is either 0 or π/2 depending on if we are dealing

with sine or cosine component of s(n).
From Fig. 2, one can see that

μAi(n)xj
=
√

(1− αλR,iM)2 cos2(θj(n)) + sin2(θj(n))

=
√

1− (2αλR,iM − (αλR,iM)2) cos2(θj(n)),

(19)

and by substituting (18) into (19), we get

μAi(n)xj
=

√
1−

(
2αλR,i −M (αλR,i)

2
)
sin2(nωj + φj).

(20)

Because sin2(nωj + φj) = sin2
(
(n+

Tp

2 )ωj + φj

)
(for

even Tp), we can write

Tp∏
n=1

μAi(n)xj
=

Tp∏
n=1

√
1− (2αλR,i −M (αλR,i)

2
) sin2(nωj + φj)

=

Tp/2∏
n=1

(
1− (2αλR,i −M (αλR,i)

2
) sin2(nωj + φj)

)

=1− 2αλR,i

Tp/2∑
n=1

sin2(nωj + φj)

︸ ︷︷ ︸
Tp/4

+O
{
(αλR,i)

2
}

=1− 1

2
αλR,iTp +O

{
(αλR,i)

2
}
, (21)

where O
{
(αλR,i)

2
}

is the error term that diminishes at the

rate of (αλR,i)
2

when αλR,i → 0.

Because

Tp∏
n=1

μAi(n)xj
does not depend on xj , we have

Tp∏
n=1

μAi(n)xj
=

Tp∏
n=1

μAi(n)vi
≈ 1− 1

2
αλR,iTp = λ̃A,i,

(22)

which is the eigenvalue we are looking for.

4. CONFIRMATION OF THE ESTIMATOR

Fig. 3 shows a comparison between the estimates and exact

eigenvalues. The values are calculated as a function of the
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Fig. 3. The precise eigenvalues λA,i (solid line) and the ap-

proximations λ̃A,i (dashed line) of the LMS system calcu-

lated for several filter lengths.

number of filter taps. The convergence coefficient is chosen

as α = 0.0025/(N+1) to prevent the system from becoming

unstable on large values of N . The sampling time in each

case is δt = 0.001 [s] and the reference vector is ri(n) =
4∑

j=1

sin((n−i)jω0), where ω0 = 10δt2π. Because now M =

4, the order of the system or the number of eigenvalues is 8.

The convergence rate is not adequate for a practical sys-

tem when the filter length N < 60 because the magnitude

of at least one of the eigenvalue is close to unity. For filter

lengths N > 100 the filter time span exceeds the period of

the reference, and thus no extra information is obtained from

the signal, and the largest eigenvalue does not decrease any-

more. At N = 100 the filter time span matches the period

of the reference, which is the point where all the eigenvalues

have the same magnitude. The estimator is very accurate for

the eigenvalues greater than approximately 0.9. For smaller

eigenvalues the estimation worsens, but is still able to predict

the shape of the curve roughly. When the actual eigenvalues

are approximately < 0.6 (not shown in the figure), the error

becomes large, and the estimates cannot be utilized anymore.

5. CONCLUSION

This work presents a derivation of an estimator for the eigen-

values of an LMS system. The estimator reveals that a single

matrix, namely R0, is the main contributor to the dynamics

of the system. Small eigenvalues of the matrix RT
0 R0 (or

singular values of R0) indicates the convergence rate of the

system will not be sufficient. This happens, for example, if

a small number of filter taps is used in a combination with

multi-frequency reference. The smallest singular values be-

gin to increase rapidly after the filter time span reaches ap-

proximately half of the period of the reference. The estima-

tor cannot, however, predict instability of the system, because

possible instabilities are neglected in the derivation of the es-

timator by assuming a slowly converging system.
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