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ABSTRACT

A novel way to calculate the gradient of real functions of
quaternion variables, typical cost functions in quaternion sig-
nal processing, is proposed. This is achieved by revisiting
quaternion involutions and by simplifying the existing HR

derivatives. This has allowed us to express the class of quater-
nion least mean square (QLMS) algorithms in a more com-
pact form while keeping the same generic form of LMS. Sim-
ulations in the prediction setting support the approach.

Index Terms— Quaternion gradient, conjugate gradient,
involutions, HR calculus, Quaternion LMS (QLMS)

1. INTRODUCTION

Recent developments in sensor technology and human cen-
tred computing have brought to light a new class of three- and
four-dimensional vector-valued signals. These are most con-
veniently described by quaternions, benefiting from precise
notions of rotation and orientation, enabled by their division
algebra. The growing interest in quaternion signal processing
has highlighted the need to develop fundamental tools so as
to exploit its full potential [1]. Recent advances in this direc-
tion include those in spectrum analysis [2], algebraic matrix
decompositions [3] [4] and augmented statistics [5] [6]. How-
ever, the calculus of quaternions, especially in the context of
the derivatives of non-analytic functions, such as the standard
instantaneous squared error J = |e|2 has only recently been
addressed [7].
Statistical signal processing often involves optimisation of
real-valued cost functions of quaternion variables which are
not analytic, and hence cannot be differentiated in the usual
‘complex’ or ‘quaternion’ sense. The CR (Wirtinger) calcu-
lus addresses this problem in the complex domain C [8] [9],
whereas it was not until only recently that the HR-calculus
provided a unifying way to differentiate real-valued functions
inH [7]. The Wirtinger andHR-calculus thus offer an elegant
way to differentiate directly in the complex or hypercomplex
division algebras, and thus bypass the cumbersome task of
differentiating separately with respect to the real and imag-
inary parts of the corresponding variables. Following our
work on HR-calculus [7], we here extend the ‘differentiabil-
ity’ framework to cater specifically for functions described

by quaternion involutions qη ∀η ∈ {ı, j, κ} (analogous to
the complex conjugate operator). The widely linear (WL)
quaternion model [5] [6]

y = uHx+ vHxı + gHxj + hHxκ (1)

has made it increasingly apparent that quaternion involutions
play a prominent role in quaternion signal processing. This
model has been used, e.g. in adaptive filters to account for the
complete second order statistics of quaternion variables [5].
Our aim is to introduce a simplified yet accurate way to dif-
ferentiate with respect to quaternion involutions, and to pro-
pose a new gradient definition termed the ‘i-gradient’. It is
shown that the i-gradient not only points in the same direction
as the conjugate gradient ∂f(·)

∂q∗
(standard pseudogradient and

HR
∗−derivative), but also produces the same generic solu-

tions as those in the real and complex domains. We illustrate
the use of the HR calculus and the i-gradient in the context
of the quaternion least mean square (QLMS) algorithm [10].
This is supported by a rigorous comparative analysis of the
adaptive filters corresponding to the different gradient defini-
tions, and a set of simulations, demonstrating the advantage
of the i-gradient over the standard conjugate gradient.

2. QUATERNIONS AND ITS INVOLUTIONS

For a quaternion q = qa + ıqb + jqc + κqd = Sq + V q, the
scalar (real) part is denoted by qa = Sq = �(q), whereas
the vector part (also called pure quaternion) V q = �(q) =
ıqb + jqc + κqd comprises the three imaginary parts. The
noncommutative quaternion product is given by

q1q2 = Sq1Sq2−V q1 ·V q2+Sq2V q1+Sq1V q2+V q1×V q2

where the symbol ‘·’ denotes the scalar product1 and ‘×’ the
vector product. The quaternion conjugate is given by q∗ =
Sq − V q, and the norm by ‖ q ‖= √

< q, q > =
√
qq∗, and

thus q−1 = q∗

qq∗
= q∗

‖q‖2 = q∗

<q,q>
, and ı−1 = −ı, j−1 =

−j, κ−1 = −κ.

1The scalar product q1 · q2 =< q1, q2 >, q1, q2 ∈ H is defined as

q1 · q2 = q1aq2a + q1bq2b + q1cq2c + q1dq2d = �
(
q1q

∗

2

)
= �

(
q
∗

1q2
)
.
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2.1. Similarity Relations and Involutions

The similarity relation between quaternions p and q denoted
by ‘∼’ implies the following relationship

p ∼ q ⇔ p = μqμ−1, μ 
= 0 (2)

Similarity relations of particular interest are the quaternion
involutions2 (self-inverse mappings)

qı = qa + ıqb − jqc − κqd qj = qa − ıqb + jqc − κqd

qκ = qa − ıqb − jqc + κqd (4)

Notice that the quaternion conjugate is also an involution, that
is, (q∗)∗ = q. Properties of quaternion involutions for quater-
nion product can be summarised as

(pη)η = p (pη)∗ = (p∗)η

(pq)η = pηqη (pq)η∗ = qη∗pη∗

(pδ)η = (pη)δ = pα ∀η 
= δ 
= α ∈ {ı, j, κ} (5)

The relationship between the involutions and the conjugate of
a quaternion variable is given by

q∗ =
1

2
(qı + qj + qκ − q) (6)

q =
1

2
(qı∗ + qj∗ + qκ∗ − q) (7)

The identities in (6) - (7) are crucial in the analysis of quater-
nion gradients, as discussed below.

2.2. The HR-Calculus and Quaternion Differentiability

TheHR-calculus provides an enabling tool for the differentia-
tion of both analytic and non-analytic functions of quaternion
variables under the same umbrella. It was developed in [7] to
circumvent the stringent Cauchy-Riemann-Fueter (CRF) con-
ditions, which are satisfied only by linear functions and con-
stants. The HR and HR

∗-derivatives are given respectively
as [7]

∂f(q, qı, qj, qκ)

∂q
=

1

4

[ ∂f
∂qa

− ı
∂f

∂qb
− j

∂f

∂qc
− κ

∂f

∂qd

]
(8)

∂f(q∗, qı∗, qj∗, qκ∗)

∂q∗
=

1

4

[ ∂f
∂qa

+ ı
∂f

∂qb
+ j

∂f

∂qc
+ κ

∂f

∂qd

]
(9)

For instance, to use the HR-derivative, we first express the
function f(·) in terms of the involutions q, qı, qj, qκ using (6)
and then differentiate with respect to q. Consider the function
f(·) = q∗, its HR-derivative is ∂f

∂q
= −1/2, due to the rela-

tionship in (6). This derivative is not possible to make using
the CRF conditions, yet functions of the type J = ee∗ = |e|2
are standard in stochastic gradient signal processing.

2Each component of q can be expressed in terms of the involutions as [7]

qa =
1

4
[q + q

ı + q
j + q

κ] qc =
1

4j
[q − q

ı + q
j − q

κ]

qb =
1

4ı
[q + q

ı − q
j − q

κ] qd =
1

4κ
[q − q

ı − q
j + q

κ] (3)

2.3. The Proposed Quaternion Gradient

The gradient obtained from theHR-derivatives [7] is rigorous
and enables the derivation of stochastic gradient algorithms
in the quaternion domain with respect to both q and its conju-
gate q∗. However, the relationships in (4) and (6) suggest that
quaternion gradients with respect to the involutions should
also be accounted for. We shall now consider an alternative
gradient definition as follows. From (6) and (7), the partial
derivative ∂f

∂q
and its conjugate (∂f

∂q
)∗ can be written as

∂f

∂q
=

1

2

((
∂f

∂q

)ı∗

+

(
∂f

∂q

)j∗

+

(
∂f

∂q

)κ∗

−
(
∂f

∂q

)∗
)

(
∂f

∂q

)∗

=
1

2

((
∂f

∂q

)ı

+

(
∂f

∂q

)j

+

(
∂f

∂q

)κ

− ∂f

∂q

)

Observe that for a real function f(q) ∈ H we have ∂f
∂q

=(
∂f(q)
∂q∗

)∗
, and the above equations can be rewritten as

∂f

∂q
=

1

2

(
∂f

∂qı∗
+

∂f

∂qj∗
+

∂f

∂qκ∗
− ∂f

∂q∗

)
(10)

∂f

∂q∗
=

1

2

(
∂f

∂qı
+

∂f

∂qj
+

∂f

∂qκ
− ∂f

∂q

)
(11)

It was shown in [7] that in optimization problems in H, it is
the conjugate gradient∇q∗f rather than the standard gradient
∇qf that should be used, for it provides the maximum rate
of change of f(q). We therefore proceed by substituting (10)
into (11) to give

∂f

∂q∗
=

1

2

(
∂f

∂qı
+

∂f

∂qj
+

∂f

∂qκ

−1

2

(
∂f

∂qı∗
+

∂f

∂qj∗
+

∂f

∂qκ∗
− ∂f

∂q∗

))
(12)

yielding after factorisation

3

4

∂f

∂q∗ =
1

2

(
1

2

(
∂f

∂qı
+

∂f

∂qj
+

∂f

∂qκ

)
+

1

2

(
∂f

∂qı
− ∂f

∂qı∗

)

+
1

2

(
∂f

∂qj
− ∂f

∂qj∗

)
+

1

2

(
∂f

∂qκ
− ∂f

∂qκ∗

))
(13)

Upon using the following identities

• 1
2 (q − q∗) = �(q) where the operator �(·) stands for
the imaginary (vector) part of q

• ∂f(q)
∂q∗

= ∂f∗(q)
∂q∗

=
(

∂f(q)
∂q

)∗
valid for a real function of

quaternion variables f(q)

the partial derivative ∂f
∂q∗

in (13) becomes

∂f

∂q∗
=

1

3

((
∂f

∂qı
+

∂f

∂qj
+

∂f

∂qκ

)

+2

(
�
(
∂f

∂qı

)
+ �

(
∂f

∂qj

)
+ �

(
∂f

∂qκ

)))
(14)
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that is, as desired, as a function of the involutions ∂f
∂qı

, ∂f
∂qj

and
∂f
∂qκ

. This way, the involution-wise partial derivatives ∂f
∂qı

, ∂f
∂qj

and ∂f
∂qκ

are all components of the gradient ∂f
∂q∗

, whose real
and imaginary parts are

�
[
∂f

∂q∗

]
=

1

3
�
[
∂f

∂qı
+

∂f

∂qj
+

∂f

∂qκ

]
(15)

�
[
∂f

∂q∗

]
= �

[
∂f

∂qı
+

∂f

∂qj
+

∂f

∂qκ

]
(16)

Observe that the direction of the vector part of the gradient
∂f
∂q∗

is equivalent to ∂f
∂qı

+ ∂f
∂qj

+ ∂f
∂qκ

, the only difference being
the magnitude of the real part. This motivates us to adopt a
new definition of quaternion gradient, termed the involution-
or i-gradient, given by two equivalent expressions

∇wηJ =
∂J

∂qı
+

∂J

∂qj
+

∂J

∂qκ
(17)

∇wηJ =
1

4

[
3

∂

∂qa
+ ı

∂f

∂qb
+ j

∂f

∂qc
+ κ

∂f

∂qd

]
=

∂f

∂q∗
+
1

2

∂f

∂qa
(18)

Remark#1: As compared with HR calculus, The i-gradient
in (18) includes an additional term 0.5∂f/∂qa, which in-
creases the steepness of the descent when minimising the
real-valued function f(·) with respect to the real component
of the quaternion variable qa.
Remark#2: This suggests a potential faster convergence of
the i-gradient, as compared to the standard conjugate gradient
derived from the HR calculus.

3. iQUATERNION LEAST MEAN SQUARE
ALGORITHM

We now demonstrate the usefulness of the i-gradient in adap-
tive filtering applications. Consider the gradient of the cost
function J(k) = 1

2e(k)e
∗(k) in the form

∇wηJ(k)=
1

2

∑
η={ı,j,κ}

e(k)
∂e∗(k)

∂wη(k)
+

∂e(k)

∂wη(k)
e∗(k) (19)

Using the rules of HR-calculus, we have [7]

∂e∗(k)

∂wη
= 0 ∀η ∈ {ı, j, κ} (20)

To obtain ∂e(k)
∂wı ,∂e(k)

∂wj and ∂e(k)
∂wκ , substitute w∗ into the ex-

pression for e(k), to give

e(k) = d(k)− 1

2

(
wı(k) + wj(k) + wκ(k)− w(k)

)
x(k)

The gradients ∂e(k)
∂wı , ∂e(k)

∂wj and ∂e(k)
∂wκ can now be calculated

by direct differentiation, yielding

∂e(k)

∂wη
= −1

2
x(k) ∀η ∈ {ı, j, κ} (21)

Substituting (20) and (21) into (19) and using the result in the
steepest descent w(k + 1) = w(k) − μ∇wηJ(k) gives the
following weight update

w(k + 1) = w(k) +
3

4
μx(k)e∗(k) (22)

This algorithm is termed the iQLMS (the i-gradient based
QLMS). Observe that it has the same generic form as the LMS
and complex LMS [9], as the term 3

4 can be absorbed into the
learning rate, and that the iQLMS requires half the compu-
tations of the QLMS, compare the updates in (24) and (26).
In the same spirit, the WL-iQLMS based on the widely linear
version of QLMS can be derived as [10]

wa(k + 1) = wa(k) +
3

4
μxa(k)e∗(k) (23)

where xa = [xT xiT xjT xkT ]T is the augmented input vec-
tor and wa = [uT vT gT hT ]T in the WL model (1).

3.1. Comparative Analysis of Quaternion Adaptive Fil-
ters

The original expression for the QLMS weight update Δw =
w(k + 1)−w(k), is given by [10]

Δw = μ

(
1

2
e(k)x∗(k)− 1

4
x∗(k)e∗(k)

)
(24)

while the expression for the QLMS update derived using the
HR-calculus based gradient ∇w∗J , is

Δw = μ

(
1

2
e(k)x∗(k)− 1

4
x(k)e∗(k)

)
(25)

and for the iQLMS algorithm, derived using the involution
derivatives, the update is given by

Δw =
3

4
μe(k)x∗(k) (26)

It can be shown that the updates in (24) – (26) can be ex-
pressed in the same generic form as

�[Δw] = α μ�
[
e(k)�[x(k)]

]
− β μ�

[
e(k)�[x(k)]

]

�[Δw] = γ μ�
[
e(k)�[x(k)]

]
− δ μ�

[
e(k)�[x(k)]

]
(27)

The weight updates for the two QLMS and iQLMS only dif-
fer in the weighting factors as shown in Table 1.
Remark#3: The geometries of updates for all the three algo-
rithms in (24) – (26) are topologically similar, as the weight
updates follow the same principle.
Remark#4: The same information is used in the weight up-
dates of all the three algorithms, indicating that they should
exhibit similar steady state performances.
Remark#5: The difference in the coefficients α, β, γ, and δ
in (27) suggests different rates of convergence for (24) – (26),
with the iQLMS having the fastest convergence rate.

3775



0 100 200 300 400 500 600
0

5

10

15

20

25
ℜ{w

}

IQLMS
HRQLMS
QLMS

0 100 200 300 400 500 600
0

5

10

15

20

25

30

ℑ i{w}

0 100 200 300 400 500 600
−14

−12

−10

−8

−6

−4

−2

0

ℑ j{w}

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

16

Sample

ℑ k{w}

0 100 200 300 400 500 600
−20

−15

−10

−5

0

5

10

15

20

25

Sample

20l
og1

0|e
| (d

B)

HR QLMS

IQLMS

QLMS

 IQLMS, HR QLMS

QLMS

 IQLMS, HR QLMS

QLMS

 IQLMS, HR QLMS

QLMS

HR−QLMS

IQLMS

QLMS

Fig. 1. Left, Center: Evolutions of adaptive weights of QLMS, HR-QLMS and iQLMS for one trial on the prediction of the
MA(4) signal in (28). Right: Learning curves of the QLMS, HR-QLMS and iQLMS averaged over 50 trials of the signal in
(28).

Table 1. Comparative analysis of quaternion adaptive filters

Algorithms in their generic form (27) α β γ δ
QLMS in (24) 1/4 3/4 3/4 1/4

HR-QLMS in (25) 1/4 1/4 3/4 3/4
iQLMS in (26) 3/4 3/4 3/4 3/4

4. SIMULATIONS

The convergence properties of the QLMS, HR-QLMS, and
iQLMS were assessed on 50 averaged trials shown in the right
plot of Fig. 1. In this set of simulations, the adaptive filters
were set in a prediction setting and a moving average MA(4)
signal employed is given by

y(k)=w0x(k) + . . .+ w4x(k − 4) + n(k) (28)
where w0, . . . , w4 are quaternion-valued weights initialised
randomly from a quadrivariate Gaussian distribution and n(k)
is quadruply white Gaussian circular noise. Observe that the
iQLMS and QLMS algorithms offer faster convergence than
the HR-QLMS, conforming with Remark 4. Remark 2 and 3
explain the reasons why all the three QLMS algorithms exhib-
ited the same performance in the steady state. The interpreta-
tion of the four left hand plots in Fig. 1 is that the better con-
vergence behaviour of iQLMS over HR-QLMS for the real
part �{w} of the weight can be attributed to the additional
gradient component ∂f

∂qa

in (18).

5. CONCLUSIONS

We have extended the HR-calculus to enable gradient com-
putations with respect to the quaternion involutions. Analy-
sis has shown that the i-gradient points in the same direction
of the conjugate gradient and includes an additional gradi-
ent component with respect to the real part of a quaternion

variable. Moreover, in the context of the QLMS algorithm,
the use of the i-gradient has simplified its update, resulting in
half the computational complexity. Comparative analysis has
shown that QLMS, HR-QLMS and iQLMS are essentially
the same (and thus have the same steady state performance),
however the iQLMS has the same generic form as LMS and
CLMS.
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