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ABSTRACT
This paper presents a family of least-squares algorithms for

adaptive signal processing of complex-valued signals. The al-

gorithms employ a composite cost function that allows mag-

nitude and phase errors to be weighted differently in the pa-

rameter estimation depending on their importance, provid-

ing an opportunity for enhanced estimation performance over

standard least-squares methods. We also describe a proce-

dure for automatically adjusting this weighting based on the

estimation errors themselves. Simulations show the excellent

behavior of the algorithms in time-varying signal conditions.

Index Terms— Adaptive algorithm, adaptive equalizers,

adaptive signal processing, adaptive systems, antenna arrays

1. INTRODUCTION
The least-squares principle is perhaps the most-used estima-

tion method in existence, being the basis of linear regression.

The exponentially-weighted recursive least-squares algorithm

is well-known and a fundamental part of the Kalman filter

for state-space estimation and tracking. When computational

complexity is not an issue, least-squares approaches are com-

monly used in linear estimation tasks.

This paper considers the complex extension of the lin-

ear least-squares estimation task, in which a sequence of

complex-valued input signal vectors xk = [x1,k · · ·xL,k]T is

used to model a desired response signal dk via the relation

yn,k = wT
nxk, where wn = [w1,n · · ·wL,n]T is the weight

vector of a linear adaptive system with complex coefficients

at iteration n. There are numerous practical situations where

the linear model for yn,k is not adequate for estimating dk

due to some disturbance of the desired signal. One case in

communications is when the desired response signal under-

goes a complex phase shift due to Doppler effects that is not

reflected in the input signal vector [1]. Another case is when

the component of the desired response signal that is related

to the input signal vector has an unknown and fast-varying

amplitude. Both of these scenarios cause a degradation of

estimation performance and limit the use of least-squares

methods in these tasks.

In this paper, we present a family of linear least-squares

estimation procedures for situations in which the uncer-

tainty of the magnitude and/or phase errors of the signal

estimates is unknown or time-varying. The algorithm family

can be viewed as the least-squares extension of the recently-

proposed least-mean magnitude phase (LSMP) algorithm for

adaptive filtering [2]. A key result of this paper is a procedure

for automatically selecting the weighting of the magnitude

and phase costs within the composite cost used to calculate

the parameter estimates. Simulations indicate that the pro-

cedures can outperform standard least-squares approaches.

2. THE LEAST-MEAN MAGNITUDE PHASE
ALGORITHM REVISITED

To derive least-squares magnitude phase (LSMP) algorithms,

it is useful to examine the criteria that led to the derivation

of the gradient-based least-mean magnitude phase (LMMP)

algorithm. For the moment, neglect time indices of signals.

As was shown in [2], the standard LMS instantaneous cost

ĴLMS(d, y) = |d − y|2 can be decomposed as

ĴLMS(d, y) = Jm(d, y) + Jp(d, y) (1)

Ĵm(d, y) = (|d| − |y|)2 (2)

Ĵp(d, y) = 2|d||y|(1 − cos( � d − � y)). (3)

We refer to Ĵm(d, y) and Ĵp(d, y) as the magnitude cost and

the phase cost, respectively. Let α be any real value. Then,

ĴLMS(d, y) = αĴLMS(d, y) +

(1 − α)
[
Ĵm(d, y) + Ĵp(d, y)

]
. (4)

Because the magnitude and phase costs are a linear (addi-

tive) decomposition of the original LMS cost, the LMMP

algorithm can be derived as a procedure that attempts to min-

imize the linear combination of the three costs ĴLMS(d, y),
Ĵm(d, y), and Ĵp(d, y), where each cost gets a different

weighting in the algorithm. Similar ideas have been used

before in derivations of related algorithms [3]. Define the

least-mean magnitude phase instantaneous cost function as

ĴLMMP(d, y) = ĴLMS(d, y)+βmĴm(d, y)+βpĴp(d, y). (5)

The stochastic gradient algorithm obtained from this cost
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function is exactly the LMMP algorithm with the values

μm = μ

(
1
2

+ βm

)
and μp = μ

(
1
2

+ βp

)
(6)

where μ > 0, βm > 0, and βp > 0. This relation does

not guarantee unique values for μ, βm, and βp given μm and

μp. Even so, if the behavior of the LMMP algorithm is to be

translated to a least-squares context, we can consider linear

combinations of magnitude-only and phase-only costs with

the original quadratic cost from which the algorithm is based.

3. THE RECURSIVE LEAST-SQUARES
MAGNITUDE PHASE ALGORITHM FAMILY

Consider the exponentially-weighted composite least-squares

cost given by

JLSMP(wn)

=
n∑

k=1

λn−k
[
ĴLMS(dk, yn,k) + βmĴm(dk, yn,k)

+βpĴp(dk, yn,k)
]

(7)

=
n∑

k=1

λn−k
[∣∣dk − wT

nxk

∣∣2 + βm

∣∣|dk| − |wT
nxk|

∣∣2
+βp2|dk||wT

nxk|(1 − cos( � dk − � wT
nxk)

]
. (8)

The connection between (7) and (5) is clear. When βm = βp,

the standard quadratic least-squares cost is obtained. When

βm �= βp, the cost is non-quadratic, and an iterative solution

is required.

Using the derivatives in [2], the following necessary con-

ditions on wn for minimization of JLSMP(wn) are obtained:

n∑
k=1

λn−k

[
(dk − yn,k)x∗

k + βm

(
|dk| yn,k

|yn,k| − yn,k

)
x∗

k

+βp

(
dk − |dk|

|yn,k|yn,k

)
x∗

k

]
= 0. (9)

Unfortunately, because JLSMP(wn) is not quadratic in wn,

(9) is nonlinear in wn. To linearize this relationship, we

use a concept used in other approximate solutions to non-

quadratic parameter estimation problems involving exponen-

tial windows, particularly Yang’s projection approximation

subspace tracking (PAST) algorithm [4]. This concept re-

places certain terms depending on yn,k in (9) that depend on

wn with values yk−1,k estimated from past parameter vec-

tors wk, k < n. The substituted values result in a linearized

relationship

n∑
k=1

λn−k

[
(dk − yn,k)x∗

k + βm

(
|dk| yk−1,k

|yk−1,k| − yn,k

)
x∗

k

+βp

(
dk − |dk|

|yk−1,k|yn,k

)
x∗

k

]
= 0.(10)

Finally, we recognize that yk−1,k might approach zero to

cause a near divide-by-zero in the term premultiplied by βp

in some cases. To mitigate these situations, we adjust the

constraint relation as

n∑
k=1

λn−k

[
(dk − yn,k)x∗

k + βm

(
|dk| yk−1,k

|yk−1,k| − yn,k

)
x∗

k

+βpf(yk−1,k)
(

dk − |dk|
|yk−1,k|yn,k

)
x∗

k

]
= 0,(11)

where

f(y) =
{

1 if |y| > δ
0 if |y| ≤ δ

(12)

The value of δ is clearly related to the average magnitude of

|dk|, although its exact value does not appear to be critical. In

all numerical evaluations in this paper, we chose δ = 0.1.

Eq. (11) has a straightforward recursive solution. Let

d̂k = [1 + βpf(yk−1,k)] dk + βm|dk| yk−1,k

|yk−1,k| (13)

γk = 1 + βm + βpf(yk−1,k)
|dk|

|yk−1,k| (14)

Then, the solution for wn can be propagated as

wn = R−1
n pn (15)

Rn = λRn−1 + γnx∗
nxT

n (16)

pn = λpn−1 + d̂nx∗
n (17)

Eqs. (13)–(17) define the recursive least-squares magni-

tude phase (RLSMP) algorithm family. Any specific imple-

mentation of RLSMP is mathematically-equivalent to these

relations with a particular method of propagating their solu-

tion recursively. For example, the well-known O(L2) solu-

tion to the above relations can be derived using the Woodbury

(matrix inversion) lemma, resulting in the relations

R−1
n =

1
λ

⎛
⎜⎜⎝R−1

n−1 −
R−1

n−1x
∗
nxT

nR−1
n−1

λ

γn
+ xT

nR−1
n−1x

∗
n

⎞
⎟⎟⎠ (18)

wn = wn−1 + (dn − γnyn−1,n)R−1
n x∗

n. (19)

Other forms of the algorithm involving QR or Householder-

based square-root implementations are also easily derived due

to the fact that γk > 0 but will not be described here.

4. ALGORITHM ADAPTATION FOR IMPROVED
PERFORMANCE

In most applications of the gradient-based LMMP algorithm

[2], either the magnitude cost or the phase cost is emphasized

in order to improve the algorithm’s performance over that of

the LMS algorithm. This emphasis has been chosen through

the selection of the step sizes μm and μp at the onset of the

procedure based on a priori or side information.
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In the LSMP algorithm, we can choose βm and βp to em-

phasize either magnitude or phase information, respectively,

in the algorithm based on available side information. Due to

the nice way βm and βp appear in the update relations, how-

ever, it is reasonable to consider time-varying values of βm,k

and βp,k, which changes the constraint relation to be

n∑
k=1

λn−k

[
(dk − yn,k)x∗

k + βm,k

(
|dk| yk−1,k

|yk−1,k| − yn,k

)
x∗

k

+βp,kf(yk−1,k)
(

dk − |dk|
|yk−1,k|yn,k

)
x∗

k

]
= 0,(20)

To maintain the number of parameters at a manageable level,

we set

βm,k = βk (21)

βp,k = βmax − βk (22)

and adjust the single parameter βk to obtain the desired be-

havior. In absence of any good information for choosing

βmax, we set βmax = 1 and β0 = 0.5.

The advantage of the LSMP cost over the standard least-

squares cost is obtained when one of either the magnitude

error em,k = |dk|sgn(yk−1,k) − yk−1,k or the phase error

ep,k = dk −|dk|sgn(yk−1,k) provides better information than

the other. By emphasizing the right one of these error signals

over the other in the cost, a more-accurate estimate of the

parameter vector is likely to be obtained. In the absence of

any prior information on dn and xn, the relative magnitudes

of |em,n| and |ep,n| can serve as the metric for this choice at

time sample n. Consider a simple strategy for adjusting the

value of βk:

βn =
{

(1 − μ)βn−1 + μβmax if |em,n| < |ep,n|
(1 − μ)βn−1 if |em,n| > |ep,n|(23)

where

em,n = |dn| yn−1,n

|yn−1,n| − yn−1,n (24)

ep,n = dn − |dn| yn−1,n

|yn−1,n| (25)

The solution for wn is the same as before, except

d̂n = [1 + (1 − βn)f(yn−1,n)] dn + βn|dn| yn−1,n

|yn−1,n|(26)

γn = 1 + βn + (1 − βn)f(yn−1,n)
|dn|

|yn−1,n| (27)

This version of the RLSMP algorithm has two parameters: λ
and μ. The value of the exponential forgetting factor λ can

be chosen according to the statistics of the data and the de-

sired tracking behavior. We typically choose μ to be some-

what smaller than 1− λ so that the tracking of the error func-

tion occurs more slowly than the minimization of the error

function through the evolution of wn.

5. A BLOCK-BASED LEAST-SQUARES
MAGNITUDE PHASE ALGORITHM

We now describe an iterative block-based version of the

LSMP algorithm required in many applications. This algo-
rithm has only a single adaptive parameter μ. This procedure

attempts to minimize the following criterion:

JBLSMP(wn)

=
N∑

k=1

[
ĴLMS(dk, yn,k) + βn,kĴm(dk, yn,k)

+(1 − βn,k)Ĵp(dk, yn,k)
]
, (28)

where the sequence βn,k, 1 ≤ k ≤ N is automatically ad-

justed at each iteration to emphasize magnitude and/or phase

errors in the criterion and achieve good performance. The

approximate constraint equation to minimize (28) is

N∑
k=1

[
(dk − yn,k)x∗

k + βn,k

(
|dk| yn−1,k

|yn−1,k| − yn,k

)
x∗

k

+(1 − βn,k)f(yn−1,k)
(

dk − |dk|
|yn−1,k|yn,k

)
x∗

k

]
= 0.(29)

Eq. (29) differs from (20) in that (a) λ = 1 and (b) the sample

a priori estimate yk−1,k is replaced by the block iteration a
priori estimate yn−1,k. This expression is in the form of a

system of linear equations in wn which is solved iteratively

at each n, and the updated wn is used to form the new system

of linear equations at iteration n + 1. Then, the algorithm is

iterated P times to obtain adequate convergence, where P is

a small integer.

In this algorithm, the entire sequence βn,k is adjusted at

each iteration n using a relation that is similar to (23), namely,

βn,k =
{

(1 − μ)βn−1,k + μβmax if |em,n−1,k| < |ep,n−1,k|
(1 − μ)βn−1,k if |em,n−1,k| > |ep,n−1,k|

(30)
where

em,n,k = |dk|sgn(yn,k) − yn,k (31)

ep,n,k = dk − |dk|sgn(yn,k). (32)

In practice, the local estimate of βn,k can be improved some-

what by a small amount of averaging of the sequence across

the k domain. In the simulations that follow, we replace βn,k

by (0.25βn,k+1 + 0.5βn,k + 0.25βn,k−1) after application of

(30) at each iteration to achieve this smoothing.

6. NUMERICAL EVALUATIONS
We first explore the behavior of RLSMP as compared to

NLMS and standard RLS in a FIR filter system identification

task, in which wopt is of length L = 10 and has complex

Gaussian entries and dk is generated according to

dk = akwT
opt,kxk, (33)
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where xk is from a time series that is created from an IIR

filter with system function H(z) =
√

0.51(1 − z−1)/(1 −
0.7 exp(−jπ/4)z−1) and the statistics of ak change with

time. For 1 ≤ k ≤ 2000, ak is uniformly-distributed

on the interval [0.5, 1.5]. For 2001 ≤ k ≤ 6000, ak has

unity amplitude and has a phase that is uniformly-distributed

over the interval −0.05π ≤ � ak ≤ 0.05π. At k = 4000,

wopt,k = −0.7jwopt,k−1. For 6001 ≤ k ≤ 10000, ak is

uniformly-distributed on the interval [0.5, 1.5]. At k = 8000,

wopt,k = 1.5jwopt,k−1. This combination of nonstationarity

and unknown system change considers various combinations

of changes in both unknown system coefficients and unknown

system statistics. At each time instant, we estimate the value

of ||wn − wopt,n||2/||wopt,n||2. One thousand simulations

are averaged to produce the curves shown. In order to equal-

ize convergence rates, we choose λ = 0.981 and μ = 1 − λ
for the RLSMP algorithm, λ = 0.99 for the standard RLS

algorithm, and μ = 1 for the NLMS algorithm.

Fig. 1 shows the averaged normalized misalignment for

the NLMS, standard RLS, and RLSMP algorithms. The per-

formance improvement for RLSMP is clearly shown in terms

of lower misalignment in steady-state with no loss of conver-

gence rate as compared to RLS, and a faster convergence rate

as compared to NLMS. Fig. 2 shows the value of βn. Note

how its value tracks the variations in both phase certainty and

magnitude certainty quite nicely. The high degree of variabil-

ity of βn is not a problem because the cost function naturally

averages the error values that matter to overall performance.

Next, we explore the behavior of the block-based LSMP

algorithm in a channel equalization task. The scenario is sim-

ilar to that described in [2], in which a received signal xk is

generated from an i.i.d. 16-QAM source as

xk = ηk + ej2πkfk [h0sk + h1sk−1 + h2sk−2], (34)

where {h0 h1 h2} = {0.2ej0.1π 1ej0.2π 0.1ej0.3π} and the

channel noise ηk is complex circular Guassian with variance

0.01. The parameter fk models frequency offset effects due to

physical motion, and its value varies from fk = 0.01 to fk =
0 to fk = 0.02 over three different 2000-sample periods, such

that N = 6000. Both a block-based LS and the iterative block

LSMP algorithm are applied to xk, with dk = sk−5, where

L = 11, μ = 0.1 and P = 10.

Across one thousand trials, the average intersymbol inter-

ference (ISI) for the standard block LS procedure is -18.5 dB,

whereas the average ISI for the iterative block LSMP algo-

rithm is -23.2 dB, a 4.7 dB improvement. Shown in Fig. 3

is an example βP,k sequence obtained from one of the block

LSMP trials. The sharp dips in βk correspond to time instants

where the signal rotation is near a multiple of 2π such that the

phase information is reliable.

7. CONCLUSIONS
In this paper, we have described a family of iterative least-

squares procedures that adjust their estimation capabilities de-
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Fig. 3. An example sequence βP,k for block LSMP in the

channel equalization example.

pending on the quality of the magnitude and phase informa-

tion in a complex-valued linear estimation task. The simplest

algorithm versions have one or two adjustable parameters and

are shown to outperform standard LS approaches when mag-

nitude and/or phase uncertainties are present.
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