
LOCATION-AIDED DISTRIBUTED PRIMARY USER IDENTIFICATION
IN A COGNITIVE RADIO SCENARIO

Pavle Belanovic, Sergio Valcarcel Macua, and Santiago Zazo
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ABSTRACT

We address a cognitive radio scenario, where a number of secondary

users performs identification of which primary user, if any, is trans-

mitting, in a distributed way and using limited location information.

We propose two fully distributed algorithms: the first is a direct iden-

tification scheme, and in the other a distributed sub-optimal detection

based on a simplified Neyman-Pearson energy detector precedes the

identification scheme. Both algorithms are studied analytically in a

realistic transmission scenario, and the advantage obtained by detec-

tion pre-processing is also verified via simulation. Finally, we give

details of their fully distributed implementation via consensus aver-

aging algorithms.

Index Terms— cognitive radio, distributed systems, wireless

sensor networks, detection, consensus.

1. INTRODUCTION

In modern wireless networks, radio spectrum is a precious resource.

Cognitive radio is one method of making ad-hoc use of unoccupied

spectrum in order to increase the efficiency of its use. At the core

of this approach lies the problem of detecting, and identifying, ac-

tive primary users by a network of secondary users. We study the

identification of which, if any, primary user is transmitting, by a

network of secondary nodes without a fusion center and with only

elementary location information. In a network of decision makers,

distributed detection has been thoroughly studied and different solu-

tions have been proposed. The problem is to decide what informa-

tion the agents should share, and to find optimal fusion rules to com-

bine the local outputs. Decentralized binary detection [1, 2, 3, 4, 5, 6]

proposes a parallel architecture in which every node sends a sum-

mary of its own observations (e.g. quantized values, test outputs or

hard decisions) to a fusion center in charge of making the final de-

cision. Recently, completely distributed implementations, in which

there is no fusion center so the nodes have to collaborate with each

other to converge to the global solution [7], have also appeared; pay-

ing special attention to on-line algorithms in which nodes collaborate

and detect in the same timescale [8, 9, 10].

The M-ary hypothesis testing, in particular with no prior knowl-

edge of the probability distributions of the alternative hypotheses,
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has received much less attention. A number of decentralized ap-

proaches, which rely on a fusion center, have been proposed. For

instance, [11] applies a blind algorithm after estimating the prior

probabilities of the hypotheses; while in [12] the M-ary detection

problem is converted into a sequence of binary detection problems.

A fully distributed scheme based on belief propagation has been pro-

posed in [13], but it requires knowledge of the prior probabilities in

order to maximize the posterior distribution.

In this paper we introduce two fully distributed algorithms for

transmission detection and primary user identification (M-ary hy-

pothesis) when the only prior knowledge is that of the noise dis-

tribution. Nevertheless, we make the assumption that rudimentary

location information is available: each secondary node knows its

attenuation factor from each primary user. This assumption is rea-

sonable in practical scenarios, because the nodes can easily learn

the attenuations though calibration (indoor or outdoor, static only),

fingerprinting (indoor, static or dynamic), GPS location and a prop-

agation model (outdoor, static or dynamic), or any other method, all

of which are beyond the scope of this paper.

2. PROBLEM DEFINITION

Let us assume a cognitive radio scenario, where P primary users

and S secondary users share the same geographic area. Each pri-

mary user may transmit at any time (though we assume at most one

primary user is transmitting at any moment) using a random ”bursty”

transmission. Each such transmission by a primary node p is mod-

eled as a signal sp which alternates between an active and a passive

state, whose lengths are Poisson random variables, with parameters

λq and (1 − λ)q, such that λ is the activity factor and q is the ex-

pected number of samples in each cycle. During the active state,

sp ∼ N (0, σ2

t ), and in the passive state sp = 0. For each trans-

mission, the primary node selects random σ2

t and λ, unknown to the

secondary nodes.

The transmitted signal is then propagated to all the secondary

users. Here we are not concerned with any propagation model in

particular. Instead, we assume a static model of the received signal

xs at the secondary node s as an attenuation of the transmitted signal

sp in AWGN, xs = αpssp + n, where n ∼ N (0, σ2

n). We assume

the realizations of n are iid at all the secondary nodes, and each node

estimates σ2

n perfectly. Globally, the attenuation is given by a matrix

A = [αps]P×S , where each coefficient is assumed static and derived

by any means, e.g. geometric model, measurements, fingerprinting

technique, etc. We assume that each node s has complete knowledge

of its column of A, but not of any other nodes’ attenuations. Other

than this, no further location information is required by any node:

neither its own location, nor of any other (primary or secondary)

node.

Given this model, we tackle the problem of identifying the trans-

3761978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



mitting primary user, if any, by means of a distributed algorithm that

does not rely on the availability of a fusion center serving the net-

work of secondary nodes. In other words, the nodes must coopera-

tively decide among P + 1 hypotheses {H0,H1, . . . ,HP }, where

H0 represents no transmission from any primary. To this end, we

propose two suitable algorithms, presented in the following sections.

3. IDENTIFICATION SCHEME

The first scheme we propose performs direct identification based on

distributed hypothesis testing. Each node s in isolation performs en-

ergy sampling, where W integration windows, each of length L sam-

ples, produces an energy estimate ys[w] = 1

L

PL
l=1

(xs[l])
2, with

w ∈ {1, 2, . . . , W }. Using the knowledge of the noise statistic, we

generate a new variable zs = ys − σ2

n, distributed 1 as

zs ∼
(
N

“
0,

2σ4

n

L

”
H0

N `
σ2

psλ, 2

L
(σ4

n + σ4

psλ + 2σ2

nσ2

psλ)
´ Hp

where σps = αpsσt and p ∈ {1, 2, . . . , P}. Each node s then con-

structs P + 1 hypotheses to test, by compensating its own received

distribution of W samples of zs exactly P + 1 times. The first com-

pensation represents H0, i.e. the possibility that zs contains only

noise energy, and is constructed simply by using the raw data itself

(no compensation). The following P compensations are performed

by multiplying the received distribution by a compensation factor

βpα−2

ps , i.e. one compensated distribution for each possible primary

node. The factor βp serves to normalize each of the hypothesis, rel-

ative toH0, so that later on their variances will be directly compara-

ble. Hence, βp = (‖αp‖)−1/2
, where αp = [αp1, αp2, . . . , αpS ]T.

Therefore, assuming that the hypothesis Hp is true (shown in

bold), each node s has a set of compensated distributions

N
„

σ2

psλ,
2

L

`
σ4

n + σ4

psλ + 2σ2

nσ2

psλ
´«

H0

N
„

β1σ
2

psλ

α2

1s

,
2β2

1

α4

1sL

`
σ4

n + σ4

psλ + 2σ2

nσ2

psλ
´«

H1

· · ·
N

„
βpσ

2

t λ,
2β2

p

α4
psL

`
σ

4

n + σ
4

psλ + 2σ
2

nσ
2

psλ
´«

Hp

· · ·
N

„
βP σ2

psλ

α2

Ps

,
2β2

P

α4

PsL

`
σ4

n + σ4

psλ + 2σ2

nσ2

psλ
´«

HP

Hence, there are S distributions for each hypothesis, one per node.

Another way of seeing this is that each node estimates, in iso-

lation, the product of the only two parameters common to all, σ2

t λ,

since E
`
zs|Hp/α2

ps

´
= σ2

t λ ∀s, when primary p is transmitting.

We note that for the correct hypothesis p, though all the nodes agree

perfectly in the mean, they do not in the variance, due to the different

attenuations αps which do not get canceled out.

Estimating which hypothesis is true, ĵ, across the S secondary

nodes is the next challenge, and the first to use coordination among

the secondary nodes. An intuitive approach would be to choose the

hypothesis with a minimum sum of distances among the S distribu-

tions. Remembering that in the correct hypothesis, the variance in

all the nodes does not match, prevents us from using Bhattacharyya,

Mahalanobis, or any distance metrics that take variance into consid-

eration. In other words, we disregard the variance information in

1Throughout we approximate χ2 distributions with L (and later W ) de-
grees of freedom by Gaussian distributions with the same first two moments.

each node, and use only on the means. Hence, we opt for the Eu-

clidean metric, such that

ĵ = arg min
j

SX
m=1

SX
n=1

|μm|Hj
− μn|Hj

|

= arg min
j

βpσ2

t λ
SX

m=1

SX
n=1

˛̨̨
˛̨„αpm

αjm

«
2

−
„

αpn

αjn

«
2
˛̨̨
˛̨

It is of course easy to see that the function reaches its minimum,

being 0, when j = p and is strictly greater otherwise. Unfortunately

this problem formulation cannot be used in a distributed scenario

because it requires the knowledge of the entire matrix A.

However, it is also easy to show that this sum of distances is

proportional to the sample variance of the set of S compensated

means. Hence, the problem reduces to finding the hypothesis with

minimum variance the S nodes. This problem is easily tackled in a

distributed fashion using averaging consensus algorithms [14], fol-

lowing the idea of constructing the sample covariance matrix shown

in [15]. Hence, our proposed algorithm is shown in Algorithm 1, and

illustrated in Fig. 1, where the detection block is not active.

Algorithm 1 Identification algorithm at node s

1: INPUT xs, αps∀p, σn, L, W

2: ys[w]← L−1
x

T

sxs (for each of the W elements of ys)

3: zs ← ys − σ2

n

4: μs ←W−1zT

s 1 (sample mean of zs)

5: β∗
p ← 1

S

PS
i=1

α−4

pi ⇐= consensus loop

6: ms ← [μs, μsβ1α
−2

1s , . . . , μsβP α−2

Ps ]
T

7: m∗ ← 1

S

PS
i=1

mi ⇐= consensus loop

8: vs ← diag((ms −m∗)× (ms −m∗)
T)

9: v∗ ← 1

S

PS
i=1

vi ⇐= consensus loop

10: ĵ← arg min
j

vj ∈ v∗ (index of the minimum element)

11: OUTPUT ĵ

4. DETECTION PRE-PROCESSING

In a low SNR regime the mode of failure of the scheme presented in

Section 3, and indeed any identification scheme, is that of choosing

H0 even when a signal is present, simply because this signal is too

weak to identify a particular primary node transmitting. Hence, it

makes sense to perform an (optimal or nearly-optimal) detection step

first, detecting the activity of any primary node, followed then by an

identification procedure similar to that of Section 3, but this time

with only P , rather than P + 1 hypotheses. This is illustrated in

Fig. 1.

If each node s had the knowledge of all the parameters of its zs,

the optimal test [16] based on the Neyman-Pearson criterion would

be given by T (zs) = ηzT

s 1 + θzT

s zs. Both η and θ are functions of

the statistics of zs, and since these are not known, the approach is

not feasible. It is in principle possible to construct the generalized

likelihood ratio test (GLRT) using the maximum likelihood (ML)

estimates of σ2

ps and λ. However, we found that in this cognitive

radio scenario the GLRT performed poorly, since the estimates were

very poor in the hypothesis H0.

Therefore, we propose a sub-optimal approach T (zs) = zT

s zs

T (zs) ∼
(
N

“
2Wσ4

n

L
,

8Wσ8

n

L2

”
H0

N `
W

`
σ2

a+σ4

psλ
2
´
, 2Wσ2

a

`
σ2

a+2σ4

psλ
2
´´ Hp
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Fig. 1. Structure of the identification scheme with detection pre-processing

where σ2

a = 2

L
(σ4

n + σ4

psλ + 2σ2

nσ2

psλ) for compactness. One ob-

vious advantage is that this test does not depend on the estimates of

σ2

ps and λ.

The threshold is hence γ =
2σ4

n

L
(
√

2WQ−1(Pfa) + W ), and is

calculated by each node in isolation, for a defined probability of false

alarm Pfa, where Q−1(·) is the inverse Q-function. Typically each

node would compare the local T (zs) ≶ γ producing a 1-bit detec-

tion decision, which are then combined globally (e.g. voting [17]).

Instead, we propose a weighted global test

T∗ = 1

S

PS
i=1

(T (zs)− γ) ≶ 0. Although the factor S−1 is quite

unnecessary, it shows that this global value can also be derived in a

distributed fashion via average consensus. If each node calculates

its vote as a degree of confidence T (zs)− γ, simply the sign (+
or −) of the global average of the votes (available at all the nodes

simultaneously) is the outcome of the global test. This weighing

allows the nodes closer to any transmitting primary to exert a bigger

influence, as desired.

Once the detection stage is performed in this distributed fash-

ion, all the nodes can carry out the identification procedure (also

distributed) as shown in Section 3, but this time with P rather than

P + 1 hypotheses. This is shown in Algorithm 2 and illustrated in

Fig.1, where the detection block is active.

Algorithm 2 Identification algorithm with pre-detection at node s

1: INPUT xs, αps∀p, σn, L, W, Pfa

——— Lines 2 to 5 of Algorithm 1 ———

2: γ ← 2σ4

n

L
(
√

2WQ−1(Pfa) + W ) (NP threshold, local calc.)

3: T (zs)← zT

s zs (simplified local test)

4: T∗ ← 1

S

PS
i=1

(T (zs)− γ) ⇐= consensus loop

5: if T∗ < 0 then

6: ĵ = 0 (no transmission,H0)

7: else

8: ms ← [μsβ1α
−2

1s , . . . , μsβP α−2

Ps ]
T

——— Lines 7 to 10 of Algorithm 1 ———

9: end if

10: OUTPUT ĵ

5. EXPERIMENTS

We verify, illustrate, and compare the functioning of the two pro-

posed approaches via simulations. We define a simple scenario with

four primary (P = 4) and twenty secondary users (S = 20) uni-

formly randomly located in a square area with sides of 200 m, choos-

ing the primary users to be the most distant nodes. As discussed ear-

lier, we assume iid zero-mean Gaussian noise at every secondary

node, with the variance σ2

n perfectly estimated by the secondary

users. Since every node has a different signal to noise ratio (SNR),

depending on its attenuation αps, it is not possible to express the

global results against SNR. Instead, we analyze the influence of σt

(keeping σn constant), or quite equivalently the transmitted-signal to

receiver-noise ratio StNrR = 20 log(σt/σn), which is a fictitious

parameter. We ran 104 experiments for each value of StNrR in the

range from 0 to 80 dB. In each experiment, we choose one of the

P + 1 equally probable hypotheses. The identification scheme uses

100 integration windows (W = 100) with two hundred samples

each (L = 200). The transmitter activity factor is 50% (λ = 0.5),

with on average twenty samples per cycle (q = 20).

In Fig. 2(a) we show the performance of both schemes in terms

of a classic metric, the probability of detection. We see that at low to

mid StNrR levels, the nearly-optimal detection pre-processing step

brings about 10 dB of improvement. Both curves converge on the

left to the value of the Pfa, as usual, since both schemes fail in the

same way. They are unable to separate the H0 and Hp hypotheses,

which at such low StNrR levels practically overlap completely.

On the other hand, in Fig. 2(b) we show the probability of iden-

tification, being the proportion of successful hypothesis identifica-

tions relative to the total number of experiments at that hypothe-

sis, summed over all the hypotheses and normalized by (P + 1)−1.

Again, we see a significant improvement won by the pre-detection

step, of around 10 dB. As expected, both curves converge on the left

to (P + 1)−1, which is 1/5 in this experiment.

6. CONCLUSIONS

In this work we studied the problem of identifying the active primary

user by a distributed network of secondary nodes with very lim-

ited location information. We proposed two fully distributed algo-

rithms, based on identification only, or identification with a detection

pre-processing step. In the detection phase, we introduced a novel

weighted global test, which allows the secondary nodes closer to the

transmitter to exert a bigger influence. Both algorithms are imple-

mented using averaging consensus to provide coordination among
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Fig. 2. Probability of detection and identification with increasing levels of StNrR

the nodes. As expected, the nearly optimal detection step brings

a compelling improvement of about 10 dB. Future work may in-

clude constructing hypotheses for multiple simultaneously transmit-

ting primary users, and exploring the effect of imperfect knowledge

(estimates) of the attenuation factors.
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