
PERFORMANCE OF DIFFUSION ADAPTATION FOR COLLABORATIVE OPTIMIZATION

Jianshu Chen and Ali H. Sayed

Department of Electrical Engineering

University of California, Los Angeles

ABSTRACT

We derive an adaptive diffusion mechanism to optimize global cost
functions in a distributed manner over a network of nodes. The cost
function is assumed to consist of the sum of individual components,
and diffusion adaptation is used to enable the nodes to cooperate lo-
cally through in-network processing in order to solve the desired op-
timization problem. We analyze the mean-square-error performance
of the algorithm, including its transient and steady-state behavior.
We illustrate one application in the context of least-mean-squares
estimation for sparse vectors.

Index Terms— Distributed optimization, diffusion adaptation,
in-network processing, learning, energy conservation.

1. INTRODUCTION

We consider the problem of optimizing a global cost function in a
distributed manner. The cost function is assumed to consist of the
sum of individual components, and spatially distributed nodes are
then used to seek the common minimizer through local interactions.
There are already a couple of useful techniques for the solution of
such optimization problems. Most notable among them is the in-
cremental approach [1–3]. In this approach, a cyclic path is defined
over the nodes and data are processed in a cyclic manner through
the network until optimization is achieved. However, determining
a cyclic path that covers all nodes is an NP-hard problem and, in
addition, cyclic trajectories are vulnerable to link and node failures.
In earlier works [4–7], we introduced the concept of diffusion adap-
tation and showed how it can be used to solve least-mean-squares
estimation problems in a decentralized manner very effectively. In
the diffusion approach, information is processed locally at the nodes
and then diffused through a real-time sharing mechanism. This paper
generalizes the diffusive learning process of [4–7].

2. PROBLEM FORMULATION

The objective is to determine an optimal M × 1 vector wo that min-
imizes a global cost function of the form:

Jglob(w) =
N∑
l=1

Jl(w) (1)

where Jl(w), l = 1, 2, . . . , N , are individual real-valued functions
defined over w ∈ R

M and assumed to be differentiable and convex.
We assume Jglob(w) in (1) is strictly convex so that the minimizer
wo is unique.

Email: {jshchen, sayed}@ee.ucla.edu. This work was supported in part
by NSF grants CCF-1011918 and CCF-0942936.

Using the approach of [7], we derived in [8, 9] the following
class of diffusion algorithms for the distributed optimization of (1):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φk,i−1 =
N∑
l=1

p1,l,kwl,i−1 (2a)

ψk,i = φk,i−1 − μk

N∑
l=1

sl,k∇wJl(φk,i−1) (2b)

wk,i =
N∑
l=1

p2,l,kψl,i (2c)

where wk,i is the local estimate for wo at node k and time i, μk

is the step-size parameter at node k, and ∇wJl(w) is the (column)
gradient vector of Jl(·) relative to w. Moreover, the non-negative
coefficients {p1,l,k}, {sl,k}, and {p2,l,k} are the (l, k)-th entries of
matrices P1, S, and P2, respectively, and are required to satisfy:

PT
1 1 = 1, PT

2 1 = 1, S1 = 1

p1,l,k = 0, p2,l,k = 0 , sl,k = 0 if l /∈ Nk

(3)

where 1 denotes a vector with all entries equal to one, and Nk de-
notes the neighborhood of node k. Different choices for {P1, P2, S}
correspond to different cooperation strategies [7]. For example,
P1 = I , P2 = I and S = I correspond to the no-cooperation case.
On the other hand, P1 = I , P2 = A and S = C correspond to the
adapt-then-combine (ATC) strategy [7], while the choice P1 = A,
P2 = I and S = C correspond to the combine-then-adapt (CTA)
strategy [6] (where A and C denote matrices with nonnegative
entries that satisfy AT1 = 1 and C1 = 1).

Adaptive diffusion strategies of these forms were originally de-
rived in [4–7] and used to solve distributed minimum mean-square-
error estimation problems over networks. The special case of the
CTA strategy with C = I appeared later in [10, 11] to solve dis-
tributed optimization problems albeit by further requiring all nodes
to reach consensus. Diffusion strategies of the form (2) are more
powerful in a couple of respects. First, they do not only diffuse the
local estimates, but they can also diffuse the local gradient vectors.
Second, the combination weights {p1,l,k, p2,l,k} are not required to
be doubly stochastic (we are only requiring the columns of P1 and
P2 to add up to one). Finally, the step-size parameters in (2) are
not required to be vanishing; instead, they can assume constant val-
ues, and this flexibility enables continuous adaptation and learning.
Multi-agent systems in nature behave in this manner; they do not re-
quire exact agreement among their agents but allow for fluctuations
due to individual levels of assessment and noise.

We established in [8] that the individual estimators {wk,i} that
are generated by (2) converge asymptotically to wo under the condi-
tion of bounded Hessian matrices, as specified by (15) further ahead.

3753978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

In many situations in practice, the true gradient vectors needed in
(2b) may not be available. Instead, perturbed versions are available,
which we model as

∇̂wJl(w) = ∇wJl(w) + vl(w) (4)

where the noise term, vl(w), may depend onw and will be required
to satisfy certain conditions given by (17)–(18). We refer to the per-
turbation in (4) as gradient noise. In this paper, we examine the
effect of gradient noise on the convergence and mean-square perfor-
mance of the diffusion strategy. In particular, we characterize the
steady-state mean-square-deviation (MSD) of the network.

3. MEAN-SQUARED PERFORMANCE

3.1. Error Recursions

Introduce the error vectors:

φ̃k,i = wo − φk,i, ψ̃k,i = wo −ψk,i, w̃k,i = wo −wk,i

Then, from (2)–(4), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̃k,i−1 =
N∑
l=1

p1,l,kw̃l,i−1 (5a)

ψ̃k,i= φ̃k,i−1+μk

N∑
l=1

sl,k
[∇wJl(φk,i−1)+vl(φk,i−1)

]
(5b)

w̃k,i =
N∑
l=1

p2,l,kψ̃l,i (5c)

We need to relate ∇wJl(φk,i−1) in (5b) to φ̃k,i−1. Assume each
Jl(w) has a minimizer at the same wo. Then, from [12, p.6]:

∇wJl(φk,i−1) =−
[∫ 1

0

∇2
wJl

(
wo−tφ̃k,i−1

)
dt

]
φ̃k,i−1

�−Hl,k,i−1φ̃k,i−1 (6)

Substituting (6) into (5b) leads to:

ψ̃k,i=
[
IM−μk

N∑
l=1

sl,kHl,k,i−1
]
φ̃k,i−1+μk

N∑
l=1

sl,kvl(φk,i−1) (7)

Introduce the global error vectors and matrices:

φ̃i=col{φ̃1,i · · · φ̃N,i}, ψ̃i=col{ψ̃1,i · · · ψ̃N,i} (8)

w̃i=col{w̃1,i · · · w̃N,i} (9)

P1=P1 ⊗ IM , P2=P2 ⊗ IM ,S=S ⊗ IM , M=Ω⊗ IM (10)

Ω = diag {μ1, . . . , μN} (11)

Di−1 =
∑N

l=1 diag
{
sl,1Hl,1,i−1 · · · , sl,NHl,N,i−1

}
(12)

Gi =
∑N

l=1 col
{
sl,1vl(φ1,i−1), · · · , sl,Nvl(φN,i−1)

}
(13)

Then, recursions (5a), (7), and (5c) give:

w̃i = PT
2 [IMN −MDi−1]PT

1 w̃i−1 + PT
2 MGi (14)

Assumption 1 (Bounded Hessian). There exist nonnegative real
numbers λl,min and λl,max such that

λl,minIM ≤ ∇2Jl(w) ≤ λl,maxIM (15)

N∑
l=1

sl,kλl,min > 0, k = 1, . . . , N (16)

�

Assumption 2 (Gradient noise). Conditioned on the history up to
time i − 1, the noise vl(φk,i−1) is zero mean, and its variance is
upper bounded by the squared-norm of φ̃k,i−1. Specifically, there
exist α ≥ 0 and σ2

v ≥ 0 such that, for all i, l, and k:

E {vl(φk,i−1) | Fi−1} = 0 (17)

E
{‖vl(φk,i−1)‖2 | Fi−1

} ≤ α‖φ̃k,i−1‖2 + σ2
v (18)

where Fi−1 � {wk,j : k = 1, . . . , N and j ≤ i− 1}. �
Lemma 1. The matrixHl,k,i−1 defined in (6) is a nonnegative def-
inite matrix that satisfies the following condition:

λl,minIM ≤Hl,k,i−1 ≤ λl,maxIM (19)

Proof. The result follows from (6) and (15). �

Compared to the bounded gradient norm assumption in [10], As-
sumption 1 is more general in the sense that it allows the gradient
vector ∇wJl(w) to have unbounded norm (as happens, for exam-
ple, in the case of quadratic costs). Likewise, condition (18) allows
the variance of the gradient noise to be unbounded and time-varying.
This condition is more general than the “uniform bounded assump-
tions” in [10] (Assumptions 5.1 and 6.1), which are special cases
of (18) for α = 0. Furthermore, (18) is actually a combination of
the “relative random noise” and the “absolute random noise” in [12,
pp.100–102].

3.2. Variance Relations

Equating the squared weighted “norm” of both sides of recursion
(14) and using (17), we obtain the following variance relation:

E‖w̃i‖2Σ = E
{‖w̃i−1‖2Σ′

}
+ E‖PT

2 MGi‖2Σ
Σ′ = P1[IMN −MDi−1]P2ΣPT

2 [IMN −MDi−1]PT
1

(20)

where Σ is a positive semi-definite matrix that we are free to choose.
Notice that Σ′ is a random matrix that depends on {Hl,k,i−1} via
Di−1 (see (12)). By the definition ofHl,k,i−1 in (6), Σ′ further de-

pends on φ̃k,i−1, which is a linear combination of {w̃l,i−1}. There-
fore, the main challenge to continue from (20) is that Σ′ now de-
pends on w̃i−1. Then, we cannot apply the traditional step of re-
placing Σ′ in the first equation of (20) by EΣ′ as in [13, p.345] to
analyze the transient behavior of the algorithm. To address the dif-
ficulty, we modify the argument and rely first on a set of inequality
recursions to bound the mean-square-error. Then, we return to (20)
to evaluate the steady-state performance for small step-sizes.

First, we notice that (5a) and (5c) are convex combinations of
{w̃l,i−1} and {ψ̃l,i}, respectively. Then, by Jensen’s inequality⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

E‖φ̃k,i−1‖2 ≤
N∑
l=1

p1,l,kE‖w̃l,i−1‖2 (21a)

E‖w̃k,i‖2 ≤
N∑
l=1

p2,l,kE‖ψ̃l,i‖2 (21b)

Next, evaluating E‖ψ̃k,i‖2 from (7) and using property (17), we get

E‖ψ̃k,i‖2=E
{‖φ̃k,i−1‖2Σk,i−1

}
+μ2

kE
∥∥∥ N∑
l=1

sl,kvl(φk,i−1)
∥∥∥2

(22)

Σk,i−1 �
[
IM−μk

N∑
l=1

sl,kHl,k,i−1

]2
(23)

We call upon the following two lemmas to bound (22).

3754

Lemma 2. Σk,i−1 is a positive semi-definite matrix that satisfies:

0 ≤ Σk,i−1 ≤ γ2
kIM (24)

where

γk = max{|1−μkσk,max|, |1−μkσk,min|} (25)

σk,max =
N∑
l=1

sl,kλl,max, σk,min =
N∑
l=1

sl,kλl,min (26)

Proof. The proof follows from (19) and (23). �

Lemma 3. The second term on the right hand side of (22) satisfies:

E
∥∥∥ N∑
l=1

sl,kvl(φk,i−1)
∥∥∥2

≤ ‖S‖21 ·
[
αE‖φ̃k,i−1‖2 + σ2

v

]
(27)

where ‖S‖1 denotes the maximum absolute column sum of matrix S.

Proof. The result follows by applying Jensen’s inequality and is
omitted for brevity – see [9]. �

Substituting (24) and (27) into (22), we obtain:

E‖ψ̃k,i‖2 ≤ (γ2
k + μ2

kα‖S‖21) · E‖φ̃k,i−1‖2+μ2
k‖S‖21σ2

v (28)

Finally, introduce the global quantities:

Xi = col
{
E‖φ̃1,i‖2 · · ·E‖φ̃N,i‖2

}
(29)

Yi = col
{
E‖ψ̃1,i‖2 · · ·E‖ψ̃N,i‖2

}
(30)

Wi = col
{
E‖w̃1,i‖2 · · ·E‖w̃N,i‖2

}
(31)

Γ = diag
{
γ2
1 + μ2

1α‖S‖21, . . . , γ2
N + μ2

Nα‖S‖21
}

(32)

Then, (21) and (28) can be written as

Xi−1�PT
1 Wi−1, Yi�ΓXi−1+σ

2
v‖S‖21Ω2

1, Wi�PT
2 Yi (33)

where the notation x � y denotes that the components of vector x
are no greater than the corresponding components of vector y. Then,
expression (33) can be shown to lead to:

Wi � PT
2 ΓPT

1 Wi−1 + σ2
v‖S‖21 · PT

2 Ω2
1 (34)

3.3. Mean-Square Stability

Based on (34), we can now argue that, under certain conditions on
the step-size parameters {μk}, the mean-square-error vector Wi is
bounded as i → ∞, and we use this result in the next subsection
to evaluate the steady-state value for the mean-square error for suffi-
ciently small step-sizes. We can also give an estimate for the conver-
gence rate by examining the spectral radius of the matrix PT

2 ΓPT
1 .

Theorem 1 (Mean-Square Stability). If the step-sizes {μk} satisfy
the following condition:

0 < μk < min

{
2σk,max

σ2
k,max + α‖S‖21

,
2σk,min

σ2
k,min + α‖S‖21

}
(35)

for k = 1, . . . , N . Then, as i→ ∞, the following bound holds:

lim
i→∞

‖Wi‖∞ ≤

(
max

1≤k≤N
μ2
k

)
· ‖S‖21σ2

v

1− max
1≤k≤N

(γ2
k + μ2

kα‖S‖21)
(36)

where ‖x‖∞ denotes the maximum absolute entry of vector x.

Proof. Omitted due to space limitation (see [9]). �

3.4. Steady-State Performance

Expression (36) gives a bound on how large the steady-state value
of Wi can be. Now, we derive an approximate expression for the
steady-state value for small step-sizes — see (45) further ahead. We
further assume the following condition on the gradient noise.

Assumption 3 (Gradient noise model). Assume the gradient noise
vector Gi defined in (13) satisfies:

E{GiGT
i } = αE‖w̃i−1‖2 ·Qo

i−1 +Rv (37)

where ‖Qo
i−1‖ ≤ 1, and Rv is a constant matrix. �

Assumption (37) is a matrix analog of (18), where the two terms on
the right-hand side correspond to the “relative random noise” and
“absolute random noise” parts [12], respectively. As a result,

E‖PT
2 MGi‖2Σ = EGT

i MP2ΣPT
2 MGi =

αE‖w̃i−1‖2Tr
(
ΣPT

2 MQo
i−1MP2

)
+Tr

(
ΣPT

2 MRvMP2

)
(38)

In order to evaluate the steady-state performance, we first approxi-
mate (20) at small step-sizes. From (36), as the algorithm reaches
steady-state, the mean-squared value of {w̃k,i} is small at small

step-sizes. Hence, φ̃k,i−1 is also small because it is a convex com-
bination of {w̃k,i−1} (see (5a)). Then, by definition (6), Hl,k,i−1

can be approximated byHl,k,i−1 ≈ ∇2
wJl(w

o). Thus,

Di−1≈D∞�
N∑
l=1

diag
{
sl,1∇2Jl(w

o), · · · , sl,N∇2Jl(w
o)
}

(39)

Substituting (38)–(39) into (20), an approximate energy conserva-
tion relation is obtained at small step-sizes:

E‖w̃i‖2Σ ≈ E‖w̃i−1‖2Σ′′ +Tr
(
ΣPT

2 MRvMP2

)
(40)

Σ′′ ≈ P1[IMN −MD∞]P2ΣPT
2 [IMN −MD∞]PT

1 (41)

Let σ = vec(Σ) denote the vectorization operation; it stacks the
columns of Σ on top of each other. We shall use both notation
‖w̃‖2σ and ‖w̃‖2Σ interchangeably. Using the property vec(UΣV) =

(V T ⊗U)vec(Σ), we can vectorize Σ′′ in (41) as σ′′ � vec(Σ′′) ≈
Fσ where

F �
(P1[IMN−MD∞]P2

)⊗ (P1[IMN−MD∞]P2

)
(42)

and where we used the fact that D∞ is symmetric. Furthermore,
using the property Tr(ΣX) = vec(XT)Tσ, we can rewrite (40) as

E‖w̃i‖2σ ≈ E‖w̃i−1‖2Fσ +
[
vec

(
PT

2 MRvMP2

)]T
σ (43)

Finally, letting i→ ∞, we get

lim
i→∞

E‖w̃i‖2(I−F)σ ≈
[
vec

(
PT

2 MRvMP2

)]T
σ (44)

To evaluate steady-state performance from (44), we need I − F to
be invertible, which is guaranteed by (35).

Then, from (44), we can evaluate various performance metrics
by choosing proper weighting matrices Σ (or σ), as was done in
[6, 7]. For example, let mk = vec(diag(ek) ⊗ IM), where ek is
a vector whose kth entry is one and zeros elsewhere. Then, letting

3755

σ = (I−F)−1mk in (44), we get the MSD for node k, which is the
kth entry of the vector

lim
i→∞

Wi=

{
IN⊗

([
vec

(
PT

2 MRvMP2

)]T
(I−F)−1

)}
m (45)

where m = col{m1, . . . ,mN}. And the average network MSD is

MSDnetwork = lim
i→∞

1

N
1
TWi (46)

4. SIMULATION RESULTS

We consider a randomly generated 10-node network (N = 10).
Each node k has access to data {Uk,i,dk,i}, satisfying the model
dk,i = Uk,iw

o + vk,i, where the entries of each Uk,i are i.i.d.
Gaussian random variables with zero mean and unit variance, and
vk,i ∼ N (0, σ2IK) is independent ofUk,i. Our objective is to esti-
mate wo from the data set {Uk,i,dk,i} in a distributed manner. We
assume the vector wo is sparse so that it has only a few nonzero en-
tries, such as wo = [1 0 . . . 0 1]T . This application motivates us to
consider a global cost of the form:

Jglob(w)=
N∑
l=1

[
E‖dl,i−Ul,iw‖22+ γ

N
R(w)

]
=

N∑
l=1

Jl(w) (47)

whereR(w) and γ are the regularization function and regularization
factor, respectively. A popular choice isR(w) = ‖w‖1, which helps
enforce sparsity and is convex. However, it is non-differentiable.
Instead, we use a twice-differentiable approximation for ‖w‖1,
namely,

R(w) =
M∑

m=1

√
[w]2m + ε2 (48)

where [w]m denotes the mth entry of w, and ε is a small number.

In the simulation, we set M = 50, K = 5, σ2 = 1, and wo

as the M × 1 vector given previously. We apply both diffusion
and incremental methods to solve the problem; the results are av-
eraged over 100 trials. The step-sizes for ATC and CTA are set to
μ = 10−3, and the step-size for the incremental algorithm [3] is
10−3/N . This is because the incremental algorithm goes through
all N nodes during each iteration, and we need to ensure the same
convergence rate for both incremental and diffusion algorithms for a
fair comparison. We use the network MSDnetwork to measure per-
formance. Fig. 1 shows the learning curves of different algorithms
for γ = 2 and ε = 10−3. We see that diffusion and incremental
schemes have similar performance, both having 10 dB gain over the
non-cooperative case. To examine the impact of the parameter ε and
regularization factor γ, we show the steady-state MSD versus γ and
ε in Fig. 2. When ε is small (ε=10−4), adding a reasonable regu-
larization (γ=1∼4) decreases the steady-state MSD (even for the
individual case). However, when ε is large (ε=1), this choice of
R(w) is no longer a good approximation for ‖w‖1, and regulariza-
tion does not improve the MSD.

5. REFERENCES

[1] D. P. Bertsekas, “A new class of incremental gradient methods for least squares
problems,” SIAM J. Optim., vol. 7, no. 4, pp. 913–926, 1997.

[2] M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms for distributed
optimization,” IEEE J. Sel. Areas Commun., vol. 23, no. 4, pp. 798–808, 2005.

0 500 1000 1500 2000
−30

−25

−20

−15

−10

−5

0

5

Number of Iterations

A
ve

ra
ge

 N
et

w
or

k
M

S
D

 (
dB

)

Incremental
ATC (S=I)
CTA (S=I)
ATC (S=C)
CTA (S=C)
Non−cooperation

Fig. 1. Learning curves for different algorithms (γ = 2, ε = 10−3).

0 5 10 15 20
−28

−26

−24

−22

−20

−18

−16

−14

−12

−10

Regularization factor γ

S
te

ad
y

st
at

e
N

et
w

or
k

M
S

D
 (

dB
)

Incremental
ATC (S=I)
CTA (S=I)
ATC (S=C)
CTA (S=C)
Non−cooperation

ε=1

ε=10−4

Fig. 2. Steady-state MSD for different values of ε and γ (μ = 10−3).

[3] C. G. Lopes and A. H. Sayed, “Incremental adaptive strategies over distributed
networks,” IEEE Trans. Signal Process., vol. 55, no. 8, pp. 4064–4077, Aug.
2007.

[4] C. G. Lopes and A. H. Sayed, “Distributed processing over adaptive networks,”
in Proc. Adaptive Sensor Array Processing Workshop, MIT Lincoln Laboratory,
MA, June 2006.

[5] A. H. Sayed and C. G. Lopes, “Adaptive processing over distributed networks,”
IEICE Trans. Fund. of Electron., Commun. and Comput. Sci., vol. E90-A, no. 8,
pp. 1504–1510, 2007.

[6] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adaptive net-
works: Formulation and performance analysis,” IEEE Trans. Signal Process., vol.
56, no. 7, pp. 3122–3136, July 2008.

[7] F. S. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for distributed es-
timation,” IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1035–1048, March
2010.

[8] J. Chen, S.-Y. Tu, and A. H. Sayed, “Distributed optimization via diffusion adap-
tation,” in Proc. IEEE International Workshop on Comput. Advances Multi-Sensor
Adaptive Process. (CAMSAP), Puerto Rico, Dec. 2011.

[9] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for distributed opti-
mization and learning over networks,” submitted for publication (also available
at Arxiv preprint arXiv:1111.0034), Oct. 2011.

[10] S. S. Ram, A. Nedic, and V. V. Veeravalli, “Distributed stochastic subgradient
projection algorithms for convex optimization,” J. Optim. Theory Appl., vol. 147,
no. 3, pp. 516–545, 2010.

[11] P. Bianchi, G. Fort, W. Hachem, and J. Jakubowicz, “Convergence of a distributed
parameter estimator for sensor networks with local averaging of the estimates,” in
Proc. IEEE ICASSP, Prague, Czech, May 2011, pp. 3764–3767.

[12] B. Polyak, Introduction to Optimization, Optimization Software, NY, 1987.

[13] A. H. Sayed, Adaptive Filters, Wiley, NJ, 2008.

3756

