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ABSTRACT

We propose an adaptive diffusion strategy with limited communi-
cation overhead by cutting off all links but one for each node in the
network. We keep the “best” neighbor that has the smallest estimated
variance-product measure and ignore the other neighbors. The com-
bination coefficients for the interacting nodes are calculated via a
maximal-ratio-combining rule to minimize the steady-state mean-
square-deviation. Simulation results illustrate that, with less com-
munication overhead and less computations, the proposed algorithm
performs well and outperforms other related methods with similar
overheads.

Index Terms— Diffusion adaptation, adaptive networks, com-
munication constraints, gossip strategy, maximal ratio combing

1. INTRODUCTION

Collaborative learning by agents in a distributed manner is useful in
many contexts involving wireless sensor networks, cognitive radios,
biological networks, and machine learning. Various strategies for
distributed processing have been proposed in the literature including
consensus strategies [1,2], incremental strategies [3,4], and diffusion
strategies [5, 6]. The latter family of strategies endows networks
with real-time adaptation and learning abilities. Diffusion strategies
are scalable and robust, and they have been applied successfully to
model complex and self-organized behavior encountered in nature
[7, 8], and to the solution of general optimization problems [9].

In the traditional diffusion LMS strategy [5,6], each node k con-
sults with every other node l in its neighborhood, Nk. The informa-
tion exchanged between node k and its neighbors consists of their in-
termediate estimates [5] and possibly measurement/regression data
[6]. In some applications, however, networks cannot afford large
communication overhead. For example, in several wireless sens-
ing scenarios, the nodes tend to communicate with each other over
bandlimited and power-constrained links. To alleviate the communi-
cation burden, reference [10] proposed a diffusion algorithm with
limited communication requirements by removing links from the
network. At every iteration, the solution required nodes to share
estimates of their current mean-square-deviation (MSD) with their
neighbors. Each node k then chooses its “best” neighbor based on
the MSD information. Gossip and probabilistic strategies were also
considered in [11–13] to reduce the communication cost. In these
strategies, every node selects randomly a single neighbor at every it-
eration and processing is performed in coordination with the selected
neighbor.

In order to minimize the steady-state network MSD while reduc-
ing the communication overhead for diffusion algorithms, we pro-
pose an alternative criterion for removing nodes from neighborhoods
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in the network. We use a new scalar metric to measure the quality
of each neighbor. The metric is in the form of a variance-product
measure, namely, a product of the power of noise and data. It is
the combined effect of the power of noise and data that guides the
node selection process. We select and keep the “best” neighbor with
the lowest value of the variance-product and ignore other neighbors.
This process is repeated at every iteration, so that neighbors are con-
tinuously adjusted. The combination coefficients are calculated by
using the relative variance rule proposed in [14], which has the form
of a maximal-ratio-combining (MRC) rule [15]. Simulation results
illustrate that, with the same communication overhead and less com-
putations, the proposed algorithm outperforms [10] and the gossip
and probabilistic strategies [11, 12] in steady-state.

Notation: We use lowercase letters to denote vectors, upper-
case letters for matrices, plain letters for deterministic variables, and
boldface letters for random variables. We also use (·)T to denote
transposition, (·)∗ for conjugate transposition, (·)−1 for matrix in-
verse, ⊗ for Kronecker products, ρ(A) for the spectral radius of A,
and vec(A) to denote the column vector constructed by stacking the
columns of A on top of each other.

2. ADAPTIVE DIFFUSION STRATEGIES

We consider a connected network consisting of N nodes. Each node
k collects scalar measurements dk(i) and 1×M regression vectors
uk,i over successive time instants i ≥ 0. The measurements across
all nodes are assumed to be related to an unknown vector wo via a
linear regression model [15]:

dk(i) = uk,iw
o + vk(i), k = 1, 2, . . . , N (1)

where vk(i) denotes measurement noise. The M × 1 vector wo

in (1) denotes the parameter of interest. The network would like
to estimate wo in a distributed manner by seeking the solution that
minimizes the global cost function:

min
w

N∑
k=1

E|dk(i)− uk,iw|
2 (2)

This minimization problem can be solved in an adaptive and dis-
tributed manner by the adapt-then-combine (ATC) diffusion strategy
of [5]: ⎧⎪⎨⎪⎩

ψk,i = wk,i−1 + μku
∗
k,i [dk(i)− uk,iwk,i−1]

wk,i =
∑
l∈Nk

alkψl,i
(3)

where the {alk} are the nonnegative entries of a combination ma-
trix A; alk is zero whenever node l is not connected to node k, i.e.,
l /∈Nk. The N×N matrix A is required to be left-stochastic, i.e.,
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AT
1N = 1N , where 1N denotes the N ×1 vector whose entries

are all equal to one. The combination coefficients {alk} can remain
static [6] or be adjusted over time [14, 16]. The mean-square perfor-
mance and convergence properties of the ATC diffusion strategy (3)
were studied in detail in [5, 6]. In the sequel, we review the network
MSD performance for the ATC algorithm (3) and use the results to
motivate a procedure for selecting the most effective neighbor, i.e.,
the neighbor having the lowest variance-product metric.

3. SINGLE-LINK STRATEGY

Introduce the error vectors:

w̃k,i � wo −wk,i, k = 1, . . . , N (4)

and substitute the data model (1) into the ATC algorithm (3). Then,
we can establish that the error vector across the network evolves
according to the following difference equation:

w̃i = AT (INM −MRi) w̃i−1 −ATMsi (5)

where we are introducing the following block vector and matrix
quantities:

w̃i � col{w̃1,i, w̃2,i . . . , w̃N,i} (6)

M � diag{μ1IM , μ2IM , . . . , μNIM} (7)

Ri � diag
{
u

∗
1,iu1,i,u

∗
2,iu2,i, . . . ,u

∗
N,iuN,i

}
(8)

si � col{u∗
1,iv1(i),u

∗
2,iv2(i), . . . ,u

∗
N,ivN (i)} (9)

A � A⊗ IM (10)

and where In denotes the n× n identity matrix. We define the net-
work MSD as

MSD � lim
i→∞

1

N

(
N∑

k=1

E‖w̃k,i‖
2

)
(11)

We introduce the following assumptions on the statistical properties
of the measurement data and noise signals.

Assumption 1 (Statistical properties).

1. The regression data uk,i are temporally and spatially inde-
pendent and identically distributed (i.i.d.) random variables
with zero mean and covariance matrixRu,k�Eu∗

k,iuk,i>0.

2. The noise signals vk(i) are temporally and spatially i.i.d.
random variables with zero mean and variances σ2

v,k.

3. The regression datauk,i and noise signals vl(j) are mutually-
independent for all i and j, k and l.

Based on Assumption 1, it can be verfied that the following weighted
variance relation holds [5, 6]:

E‖w̃i‖
2
Σ = E‖w̃i−1‖

2
Σ′ + Tr (YΣ) (12)

where Σ is a positive semi-definite matrix that we are free to choose,
and

Σ′
� B∗ΣB +O(M2) (13)

B � AT (INM −MRu) (14)

Y � ATMSMA (15)

S � Esis
∗
i = diag

{
σ2
v,1Ru,1, . . . , σ

2
v,NRu,N

}
(16)

Ru � ERi = diag {Ru,1, . . . , Ru,N} (17)

It is shown in [16] that B is stable for step-sizes that satisfy:

μk <
2

ρ(Ru,k)
(18)

Thus, we further introduce a small step-size assumption.

Assumption 2 (Small step-sizes). The step-sizes are sufficiently
small, i.e., μk � 1.

Then, it can be deduced from (12) that the steady-state network MSD
for the ATC algorithm (3) is given by

MSD ≈
1

N
[vec(Y)]∗(IN2M2 − F)−1vec(INM ) (19)

where

F � BT ⊗B∗ (20)

Since B is stable under (18) and Assumption 2, we can rewrite the
network MSD in (19) as

MSD =
1

N

∞∑
j=0

Tr(BjYB∗j) (21)

where both Y and B depend on A. Minimizing (21) over left-
stochastic matrices A is generally non-trivial. We pursue an approx-
imate solution that optimizes an upper bound on the network MSD.
Let ‖X‖∗ denote the nuclear norm of a matrix X ∈ C

m×n, which
is defined as [17]:

‖X‖∗ �

min{m,n}∑
k=1

σk (22)

where {σk} are the singular values of X . It can be verified that

‖X‖∗ = ‖X∗‖∗ (23)

Moreover, for any Hermitian and positive semi-definite matrix X ,

‖X‖∗ = Tr(X) (24)

Let further ‖X‖b,∞ denote the block maximum norm of a matrixX;
it is induced by the block maximum norm of vectors [16]:

‖x‖b,∞ � max
1≤k≤N

‖xk‖2 (25)

where x consists of N blocks of size M × 1 each:

x = col{x1, x2, . . . , xN}, xk ∈ C
M×1 (26)

and ‖ · ‖2 denotes the Euclidean norm of its vector argument. Then,

‖X‖b,∞ � max
x �=0

‖Xx‖b,∞
‖x‖b,∞

(27)

Now noting that the term BjYB∗j is Hermitian and positive semi-
definite and using (24), we get

Tr(BjYB∗j) = ‖BjYB∗j‖∗

≤ ‖Bj‖∗ · ‖Y‖∗ · ‖B∗j‖∗
(25)
= ‖Bj‖2∗ · Tr(Y)

(a)
≤ c2‖Bj‖2b,∞ · Tr(Y)

≤ c2‖B‖2jb,∞ · Tr(Y)

≤ c2
(
‖AT ‖b,∞ · ‖INM −MRu‖b,∞

)2j
· Tr(Y)

(b)
= c2 · ρ(INM −MRu)

2j · Tr(Y) (28)
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where (a) c is some positive scalar such that ‖X‖∗ ≤ c‖X‖b,∞
because ‖X‖∗ and ‖X‖b,∞ are submultiplicative norms and all such
norms are equivalent [18], and (b) we used the fact that

‖AT ‖b,∞ = 1, ‖INM −MRu‖b,∞ = ρ(INM −MRu) (29)

In this way we can upper bound the network MSD by

MSD ≤
1

N

∞∑
j=0

c2 · ρ(INM −MRu)
2j · Tr(Y)

=
c2

N
·

Tr(ATMSMA)

1− ρ(INM −MRu)2
(30)

where the combination matrix A appears only in the numerator. This
result suggests one approach to to selecting A by minimizing the
upper bound that appears in (30) over A:

minimize
A

Tr(ATMSMA)

subject to AT
1N = 1N , alk ≥ 0

alk = 0, if l /∈ Nk

(31)

Problem (31) can be decoupled into N separate minimization prob-
lems of the form:

minimize
{alk; l∈Nk}

∑
l∈Nk

a2lkμ
2
l σ

2
v,lTr(Ru,l)

subject to
∑
l∈Nk

alk = 1, alk ≥ 0,

alk = 0 if l /∈ Nk

(32)

The optimal solution of (32) is given by

alk �
γ−2
l∑

l∈Nk
γ−2
l

(33)

where the variance-product metric γ2
k is defined as

γ2
k � μ2

kσ
2
v,kTr(Ru,k) (34)

Observe that, for each node k, the measure γ2
k is a scaled product

of the noise variance and the regression variance at that node. Thus,
nodes with large noise variance but small data variance can lead to
a small variance-product. Likewise, nodes with small noise variance
but large data variance can still lead to a small variance-product. It is
the combined effect of the noise and data variances that determines
how small or how large γ2

k is. Observe further from (34) that the
value of the variance-product for each node k depends solely on the
noise and data statistics at that same node. In other words, the value
of γ2

k is a purely local value. Still, node k does not generally know
its noise variance, σ2

v,k, and its data variance, Tr(Ru,k), to be able to
compute its variance-product from the definition (34); an alternative
computational path is needed, as we explain below. But first note that
the relative variance rule (33) is such that the weighting coefficient
to neighbor l is inversely proportional to the metric γ2

l ; the smaller
the metric is, the larger the weight. Therefore, if some nodes are to
be removed from the neighborhood of node k (to reduce the com-
munication overhead), then it is natural to remove nodes with larger
variance-products (or, equivalently, to maintain nodes with smaller
variance-products). To implement this rule with limited communi-
cations, each node k needs to evaluate its own metric γ2

k based on
the data that are available to it.

To do so, we first note that, at each iteration i, every node k in
the network can approximate its variance-product measure by means
of the following calculation:

γ̂
2
k(i) ≈ ‖wk,i−1 −ψk,i‖

2 (35)

The motivation behind this approximation is the fact from (1), (3),
and (4) that:

Eγ̂
2
k(i) ≈ E ‖μku

∗
k,i(uk,iw̃k,i−1 + vk(i))‖

2

= μ2
k

(
E ‖u∗

k,iuk,iw̃k,i−1‖
2 + E ‖u∗

k,ivk(i)‖
2
)

= μ2
k

[
E‖w̃k,i−1‖

2
(Eu∗

k,i
uk,iu

∗

k,i
uk,i)

+ σ2
v,kTr(Ru,k)

]
≈ μ2

kσ
2
v,kTr(Ru,k), as i→ ∞ (36)

because, through the variance relation (12), the term

lim
i→∞

E‖w̃k,i−1‖
2
E(u∗

k,i
uk,iu

∗

k,i
uk,i)

≈ [vec(Y)]∗(IN2M2 − F)−1vec[JkE(R
∗
iRi)Jk]

∼ O(M) (37)

is negligible under Assumption 2, where Jk is a block diagonal ma-
trix whose kth block is the identity matrix, i.e.,

Jk � diag{0, . . . , 0, IM , 0, . . . , 0} (38)

Relation (36) indicates that on average, the estimated quantity given
by (35) approaches the desired variance-product measure (34). We
can implement the averaging step by means of a smoothing operation
as follows:

γ
2
k(i) = (1− ν)γ2

k(i− 1) + νγ̂2
k(i) (39)

where ν is a forgetting factor satisfying 0 < ν < 1 and is close to
one.

In view of the above discussion, each node k collects at every
iteration i, the smoothed variance-products {γ2

l (i)} from its neigh-
bors. It then selects the node with the smallest variance-product and
requests for its intermediate estimate, ψl,i; more generally, if de-
sired, each node k can decide to maintain a subset of neighbors by
ordering the variance-products of its neighbors and selecting those
nodes with smaller metrics.

4. SINGLE-LINK DIFFUSION ALGORITHM

ATC Single-Link Diffusion Algorithm

Initialize wk,−1 = 0 and γ2
k(−1) = 0 for k = 1, 2, . . . , N .

for i ≥ 0 do
ek(i) = dk(i)− uk,iwk,i−1

ψk,i = wk,i−1 + μku
∗
k,iek(i)

γ2
k(i) = (1− ν)γ2

k(i− 1) + ν‖μku
∗
k,iek(i)‖

2

m = argmin
l∈Nk\{k}

γ2
l (i)

akk =
γ−2
k (i)

γ−2
k (i) + γ−2

m (i)

wk,i = akkψk,i + (1− akk)ψm,i

end for

Remarks:

1. The value of the forgetting factor ν is close to one, say, 0.95.
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2. The communication overhead of the proposed algorithm is
less than the traditional diffusion algorithms [5, 6]. Every
node k only receives the scalars {γ2

l (i)} from its neighbors
and the intermediate estimate φm,i, which is an M×1 vector.

3. The combination coefficients are calculated according to the
relative variance rule (33) by using the quantity (39).

5. SIMULATION RESULTS

We consider the topology of Fig. 1a with N = 20 nodes. The un-
known parameter wo of length M = 3 is randomly generated. The
regression data are i.i.d. circular complex Gaussian with zero mean
and covariance matrices {Ru,k} that are randomly generated; their
traces are shown in the upper part of Fig. 1b. The noise signals
are also i.i.d. zero-mean circular complex Gaussian, whose vari-
ances, σ2

v,k, are randomly generated and shown in the lower part
of Fig. 1b. The step-size μ = 0.02 is uniform across the network.
We compare the proposed single-link ATC algorithm with other al-
gorithms, including the traditional ATC algorithm with the relative
variance combination rule (33) using all neighbors, the randomized
gossip algorithm [11, 12], the algorithm proposed in [10], and non-
cooperative stand-alone LMS filters. We plot the average network
MSD curves in Fig. 1c by averaging over 100 experiments. From
Fig. 1c we see that, all five algorithms have the similar mean-square
convergence rates during the transient phase. Moreover, as expected,
the traditional ATC algorithm employing the relative variance com-
bination rule with full neighbors attains the lowest MSD among all
algorithms; the proposed algorithm reaches the second lowest MSD;
the algorithm from [10] is about 4 dB worse than the proposed al-
gorithm; the randomized gossip algorithm is about 1 dB worse than
the algorithm from [10]; and the non-cooperative LMS algorithm
performs the worst.

6. CONCLUSION

In this work we proposed a diffusion algorithm to reduce the com-
munication overhead by removing some links from the network. By
choosing the “best” neighbor that has the smallest variance-product
measure, the proposed algorithm can achieve lower MSD perfor-
mance than the algorithms in [10–12]. For band- or power-limited
applications such as wireless sensor networks, the proposed algo-
rithm can be used to deliver a scalable and robust distributed solution
with good performance and limited communication overhead.
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