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ABSTRACT

We present an improved Adaptive Matching Pursuit algo-
rithm for computing approximate sparse solutions for overde-
termined systems of equations. The algorithms use a greedy
approach, based on a neighbor permutation, to select the or-
dered support positions followed by a cyclical optimization of
the selected coefficients. The sparsity level of the solution is
estimated on-line using Information Theoretic Criteria. The
performance of the algorithm approaches that of the sparsity
informed RLS, while the complexity remains lower than that
of competing methods.

Index Terms— matching pursuit, adaptive algorithm,
sparse filters, channel identification

1. INTRODUCTION

In recent years, sparse approximation problems have been
of a major interest due to their practical applicability in ar-
ray processing, compression, denoising and many other tasks.
The aim of this paper is to present a series of improvements
to an adaptive version of Matching Pursuit (MP) [1] making
it a viable alternative to more complex methods like [2, 3].

Let us consider a typical example of an FIR channel iden-
tification task. At time t the channel input u(t) and output
d(t) are measured and our aim is to find the coefficients hi,
i = 0 : N , such that the estimation error

e(t) = d(t)−

N−1∑
i=0

hiu(t− i) (1)

is minimized. In a slow time varying environment, with λ as
the forgetting factor, this can be translated into minimizing

J(t) =

t∑
i=1

λ
t−i|e(i)|2. (2)

This is equivalent to minimizing, at each time instance t,
the norm of the residual ||b −Ax||2, where the matrix A ∈
R

t×N and the vector b ∈ R
t are built with the input and

output data, respectively. Furthermore, we consider that the
coefficient vector has at most M � N non-zero coefficients (x
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is sparse), fact usually valid in many practical applications.
The number of significant coefficients and their positions are
not known a priori.

For finding sparse approximate solution to the minimiza-
tion problem presented in (2) we use an Adaptive Matching
Pursuit (AMP) [4] algorithm combined with a Cyclic Match-
ing Pursuit approach [5]. The algorithm provides models with
different sparsity levels and we apply Information Theoretic
Criteria (ITC) in a similar way as in [6] to choose the model
that best fits the data. We present two algorithms, each as-
suming either a fixed or variable upper sparsity level bound
M , and we show how the ITC can be computed; we prove,
by empirical simulations, that the performance of these low-
complexity algorithms is good.

This paper is organized as follows: in section 2 we present
an improved adaptive matching pursuit algorithm; section 3
presents details regarding the ITC that are used to selecting
the best support size while section 4 details their use in con-
junction with our algorithms; section 5 contains the results
of our simulations.

2. CYCLIC ADAPTIVE MATCHING PURSUIT

We begin by presenting an extension to the classic MP algo-
rithm adjusted for an adaptive context. At the base of our
method resides an improved AMP that uses a cyclic coeffi-
cient re-computation [5] to minimize the prediction error.

Like in the MP case, the algorithm selects one by one
columns from the matrix A (named active columns) such
that they are best aligned with the residual. Upon selecting
the first column ak1

best aligned with b0 = b, the projection
of the current residual, b0, on the direction of ak1

is removed
from itself, thus resulting a new residual b1. At step i, the
search for the best aligned column aki

continues in the set
I of columns not yet chosen; a new column is selected such
that is best aligned with the current residual bi−1

ki = arg max
l∈I

|aT
l bi−1|

2

||al||2
; (3)

the new coefficient represents the alignment of the column
with the residual

xki
=

aT
ki

bi−1

||aki
||2

; (4)

the residual bi is then computed by removing the influence
of the column aki

form bi−1

bi = bi−1 − xki
aki

. (5)
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The selection of active columns stops once a given number of
columns M is reached.

The selection of the new column based on (3) guarantees
that the residual is decreased by the largest amount at each
step, without changing the values of the previously computed
coefficients. Once a set of Mi columns is selected, the value of
the coefficients can be updated by cyclically optimizing one
coefficient at a time while holding the other Mi − 1 coeffi-
cients fixed. An update of the coefficient xki

is performed
by removing the associated column ak1

from the active set,
restoring the influence it had in decreasing the residual

b
′

Mi
= bMi

+ xki
aki

(6)

and reintroducing it in the active set again. By plugging
equation (6) into (4), the new coefficient value is

x
′

ki
=

aT
ki

b
′

Mi

||aki
||2

= xki
+ γ, with γ =

aT
ki

bMi

||aki
||2

. (7)

Using the coefficient expression and the residual updates (5)
and (6), the cyclic update, made in place, is summarized by

bMi
← b

′

Mi
− (xki

+ γ)aki
= bMi

− γaki
(8)

xki
← x

′

ki
. (9)

Cyclically performing the update for each coefficient a num-
ber of times further minimizes the residual.

We propose two methods for estimating the values of M

coefficients; the first, named Cyclic Adaptive Matching Pur-
suit (CAMP) and presented in Alg. 3, cyclically updates the
coefficients after all the active columns are chosen; the second,
named Iterated Cyclic Adaptive Matching Pursuit (ICAMP)
and presented in Alg. 4, cyclically improves the coefficients
after the introduction of each new column in the active set.

The algorithms are efficiently implemented using only in-
formation about the scalar products Φi,j = aT

i aj between the
columns of the matrix A and the scalar products Ψi = aT

i b
between the the columns of A and output vector b. Equa-
tions (5), (6) and (8) can be expressed with the use of the
scalar products Ψ and Φ by multiplying on the left with AT ,
while for the others, the introduction of the scalar products
is immediate.

At time t, upon receiving a new input data vector α and
output data β, the scalar products Φ and Ψ are updated in
place and a copy, Ψ̃ of Ψ, is used to store the scalar products
with the current residual (Alg. 3 and 4, equation (∗)). Due
to the slow varying nature of the considered problem, when
we choose the active column set (Alg. 3 and 4, step 2.1)
we reuse the previous selection computed at time t − 1 and
allow changes in the column order only between neighbor
positions. The only exception is the last position, for which
all the remaining columns compete.

For the column selection and the coefficient estimation
(Alg. 1) we use the scalar products Ψ̃ between A and the
current residual and update them in place (Alg. 1, steps 1.1,
2.1, 5). This is performed after each new column is selected,
according to a vectorial version of (5). We note that, although
the algorithm can be implemented without permuting the
matrix A, to make the presentation simpler we consider that
the columns in A (and the other corresponding matrices)
are ordered according to their influence on the residual (Alg.

Alg. 1 (Estimate the coefficient i).

1 if i < M

1.1 update scalar product for next column
Ψ̃i+1 ← Ψ̃i+1 −Φi+1,1:i−1x1:i−1

1.2 ki = arg maxl∈[i,i+1]
Ψ̃2

l

Φl,l
(find best candi-

date column searching between neighbors)

2 if i == M

2.1 update remaining scalar products
Ψ̃M+1:N ← Ψ̃M+1:N−ΦM+1:N,1:M−1x1:M−1

2.2 ki = arg maxl∈[M :N ]
Ψ̃2

l

Φl,l
(find the best ki

candidate column searching all remaining
columns)

3 swap columns (and lines) i and ki in Φ
swap elements i and ki in Ψ̃, x and Ψ

4 xi = Ψ̃i

Φi,i
(evaluate the coefficient value)

5 Ψ̃1:i+1 ← Ψ̃1:i+1 − xiΦ1:i+1,i (update the scalar
product considering the new residual)

Alg. 2 (Cyclic update of Mi coefficients).

1 for i = 1 : Mi

1.1 γ = Ψ̃i

Φi,i

1.2 xi ← xi + γ (update the coefficient)

1.3 Ψ̃1:Mi+1 ← Ψ̃1:Mi+1 − γΦ1:Mi+1,i

Alg. 3 (CAMP: Cyclic adaptive matching pur-
suit).

1 update scalar products with current data; save a
copy of scalar products Ψ1:N

Φ1:N,1:N ← λΦ1:N,1:N + α1:N α
T
1:N

Ψ1:N ← λΨ1:N + βα1:N

Ψ̃1:N = Ψ1:N

}
(∗)

2 for i = 1 : M (select coefficients one by one)

2.1 estimate the coefficient i as in Alg. 1

3 for l = 1 : Nit

3.1 update Mi = M coefficients as in Alg. 2

Alg. 4 (ICAMP: Iterated cyclic adaptive match-
ing pursuit).

1 update scalar products like in (∗)
2 for i = 1 : M (select coefficients one by one)

2.1 estimate the coefficient i as in Alg. 1

2.2 for l = 1 : Nit

2.2.1 update Mi = i coefficients as in Alg. 2

2.3 x̌i,1:i = x1:i (store the current coefficients)

1, step 3). The computation of the coefficient value (Alg. 1,
step 4), if we consider the permutation influence on x, follows
directly from (4).

For both CAMP and ICAMP algorithms, after the col-
umn selection and the initial coefficient estimation, Nit cycli-
cal updates are performed such that the residual is further
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decreased. The procedure is presented in Alg. 2 and follows
closely (7) and (8), the main difference consisting in the use
of the scalar products Ψ̃ defined with the residual bMi

from
(8).

The number of operations necessary for implementing the
selection of active columns and computation of the coeffi-
cients is the same for both CAMP and ICAMP ν ≈ 3

2
N2 +

1
2
M2 + NM . The added complexity due to the cyclical up-

date is different for the two algorithms; in case of CAMP
it is ρ0 ≈ NitM

2; for ICAMP the computational burden is
greater, τ0 ≈

1
3
NitM

3 + 4NitM
2.

3. INFORMATION THEORETIC CRITERIA

The algorithms presented so far order the elements of the
solution based on their contribution in decreasing the resid-
ual. If we consider that the real cardinality Lt of the solu-
tion support is unknown and we apply the algorithms for a
number of non-zero elements M ≥ Lt then, it is plausible
to assume that, when enough data are available, the first Lt

positions chosen by the CAMP and ICAMP algorithms cor-
respond with high probability to the non-zero locations of the
true solution.

To find an estimate L for the true cardinality of the sup-
port Lt we employ information theoretic criteria (ITC). We
use two model selection methods, Bayesian information cri-
terion (BIC) [7] and Predictive least squares criterion (PLS)
[8] as suggested by [6] for a similar order selection task.

3.1. Bayesian information criterion (BIC)

Consider, at time t, the squared norm of the residual Γk =
bT

k bk computed for a solution x with a support cardinality

k; if we use the fact that bk = b0−
∑k

i=1
xiai, it results that

bT
k bk =

(
b0 −

∑k

i=1
xiai

)T (
b0 −

∑k

i=1
xiai

)
= Γ0 − 2

∑k

i=1
xiΦi +

∑k

i=1

∑k

j=1
xixjΨi,j .

(10)

Using the norm of the residual, we can define the BIC
criterion [7] at time t as

BICk,t = nef ln Γk + (k + 1) ln nef , (11)

where nef =
∑t

i=0
λt−i is the effective number of samples

used to determine the solution x.
For the ICAMP algorithm, the criterion (11) can be com-

puted directly with (10) and the stored values for the coeffi-
cients x̌k,1:k, while for CAMP the following recursion is used

Γk = Γk−1 − 2xkΦk + 2xkxT
1:kΨk,1:k − x

2
kΨ2

k,k. (12)

3.2. Predictive least squares criterion (PLS)

The PLS criterion [8] at time t is defined as

PLSk,t =

t∑
i=0

λ
t−i

e
2
k,i, (13)

where ek,i = β − α
T
1:kx1:k is the a priori estimation error at

time i produced by the k-sparse solution x computed at time

Alg. 5 (ITC CAMP).

1 estimate the coefficients as in Alg. 3

2 estimate the support size L using BIC or PLS

3 Ψ̃1:L ← Ψ̃1:L + Φ1:L,L+1:M xL+1:M (remove the
contribution of the other M − L columns)

4 for l = 1 : Nit

4.1 update Mi = L coefficients as in Alg. 2

5 if the variable M algorithm is used, increase or
decrease M by 1 such that it approaches L + Δ

Alg. 6 (ITC ICAMP).

1 estimate the coefficients as in Alg. 4

2 estimate the support size L using BIC or PLS

3 use the stored values x̌L,1:L for the coefficients

4 if the variable M algorithm is used, increase or
decrease M by 1 such that it approaches L + Δ

i− 1, α and β are the input and output at time i. The PLS
criterion is given by

PLSk,t = λPLSk,t−1 + e
2
k,t. (14)

4. ITC AND THE CAMP ALGORITHMS

We propose two variants of the algorithms. For the first
we define a maximum, fixed, sparsity level M chosen large
enough to accommodate all possible values for the true sup-
port size Lt and apply the ITC to choose an estimate L for
the support size. The second uses a variable upper spar-
sity level M which is increased or decreased by one at each
sample time such that it approaches L + Δ, where Δ is a
parameter guaranteeing that there are enough candidates for
finding the best number of non-zero elements and L is the es-
timate for the support size. The use of a variable M ensures
a lower number of operations and an improved robustness to
unknown sparsity levels.

The estimation L of the true number of non-zero elements
Lt results from minimizing the criterion

L = arg min
k=1:M

BICk,t or PLSk,t. (15)

By using the BIC and PLS criteria in conjunction with CAMP
and ICAMP, two algorithms result (Alg. 5 and Alg. 6).

The use of the ITC increases the complexity of the base
algorithms. For CAMP, the additional complexity is ρ1,bic ≈
ρ1,pls ≈ NitL

2 + M2 when using BIC and PLS; for ICAMP,
the added complexity is τ1,bic ≈

2
3
M3 + 3M2 for BIC or

τ1,pls ≈M2 for PLS.

5. SIMULATIONS

The algorithms were tested for a FIR channel identification
problem (1) with Lt = 5 nonzero coefficients and a filter order
N = 200. The coefficient positions are randomly chosen while
their variation is described by

x̃i(t) = ai cos(2πfTst + φi), (16)
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Fig. 1. Squared coefficient error for M = 5.

where the amplitude ai and phase φi are distributed uni-
formly in [0.05, 1] and [0, 2π], respectively. Afterwards, the
filter is normed so that its average norm is E{||x̃||22} = 1.
The inputs are normally distributed according to N (0, 1) and
the outputs are affected by an additive Gaussian noise with
σ2 = 0.01. The channel variation speed is controlled by the
product fTs. The measure for the performance is the coeffi-
cient mean squared error (MSE)

MSE(t) = E{||x̃− x||22}, (17)

where x̃ contains the real value of the coefficients and x their
estimate. The estimate of the MSE is computed over 1000
runs for each of the variation speeds fTs.

In Table 1 we present the MSE of several algorithms, av-
eraged over the last 100 samples, for different variation speeds
fTs and forgetting factors λ: RLS-SP, the sparsity informed
RLS algorithm with prior knowledge of the nonzero filter co-
efficients positions; RLS, the standard algorithm that consid-
ers a full filter of order N ; GRLS, the greedy algorithm with
prior knowledge of the support size from in [6]; CAMP and
ICAMP, the variants of our algorithms with prior knowledge
of the support size; (I)CAMP-PLS/BIC-F/V, the fixed and
variable M variants of the algorithms presented in Alg. 5 and
6; SPARLS, the algorithm presented in [3]; OCCD-TNWL,
the best of the algorithms from [2].

The configuration of the GRLS, SPARLS and OCCD-
TNWL algorithms is done according to the recommendations
from the corresponding articles. The parameter γ, used in
SPARLS and presented in Table 1, was optimized using a
grid search. For GRLS, CAMP and ICAMP algorithms the
value for the sparsity was chosen M = Lt; the algorithms
that employ ITC use M = 20 for the fixed threshold ver-
sion and Δ = 5 for the variable threshold algorithm; for all
our algorithms the number of cyclic optimization rounds was
Nit = 5.

In Fig. 1 we present the time evolution of our algorithms
with a variable upper sparsity level limit together with evolu-
tion of OCCD-TNWL, SPARLS and RLS-SP for fTs = 0.001.

6. CONCLUSIONS

We proposed two adaptive MP algorithm families (CAMP
and ICAMP) employing a cyclical coefficient re-computation
and using ITC (BIC and PLS) to estimate on-line the support
size. The complexity of the algorithms is lower than that of

Table 1. MSE for the studied algorithms.

fTs 0.002 0.001 0.0005 0.0002 0.0001
λ 0.90 0.92 0.94 0.96 0.98

RLS 5.3012 1.4565 0.36427 0.09774 0.04734
RLS-SP 0.0267 0.0110 0.00518 0.00246 0.00306
GRLS 0.0501 0.0178 0.00785 0.00343 0.00343
CAMP 0.0700 0.0266 0.01161 0.00453 0.00352
ICAMP 0.0534 0.0181 0.00790 0.00346 0.00343

CAMP-BIC-F 0.0805 0.0244 0.00928 0.00380 0.00367
CAMP-BIC-V 0.0649 0.0225 0.00984 0.00445 0.00379
CAMP-PLS-F 0.0899 0.0288 0.01117 0.00430 0.00371
CAMP-PLS-V 0.0745 0.0246 0.01030 0.00430 0.00366
ICAMP-BIC-F 0.0769 0.0220 0.00856 0.00377 0.00377
ICAMP-BIC-V 0.0639 0.0210 0.00992 0.00487 0.00397
ICAMP-PLS-F 0.0881 0.0249 0.00898 0.00343 0.00348
ICAMP-PLS-V 0.0683 0.0194 0.00762 0.00326 0.00340

SPARLS 0.4417 0.1578 0.04225 0.01120 0.00767
γ 170 110 75 50 75

OCCD-TNWL 0.4802 0.0436 0.01231 0.00447 0.00372

competing methods; for the ICAMP algorithms the MSE is
in general comparable with that of GRLS, while for the less
complex CAMP algorithms the MSE slightly degrades; the
additional complexity due to the ITC is low if M is small
while giving increased robustness.
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