
A PROJECTION APPROACH TO ADAPTIVE IFIR FILTERING

Sander Wahls and Holger Boche

TU München, Lehrstuhl für Theoretische Informationstechnik, Theresienstr. 90, 80333 München, Germany

{sander.wahls,boche}@tum.de

ABSTRACT
Current adaptive interpolated finite impulse response (IFIR) filter-

ing algorithms update the interpolation filter and the model filter

separately while in each case the other filter is fixed. In contrast,

we modify the standard least mean squares (LMS) algorithm such

that after each iteration the adapted filter is projected back into

the set of IFIR filters. This can be considered a joint update of the

interpolation filter and the model filter. We also propose a simplified

version of our new algorithm. With K and D denoting the lengths

of the model and the interpolation filter, respectively, the complexity

of our new simplified projected LMS algorithm is only O(K+D)
flops per iteration. Normalized variants of the new algorithms are

derived as well. The performance of the new simplified normalized

algorithm is compared in two numerical examples with a current

state-of-the-art adaptive IFIR filtering algorithm. We find that our

new algorithm converges faster. At the same time, our algorithm

does not require experimental tuning of the step size.

Index Terms— Adaptive filters, Interpolated finite impulse re-

sponse filter, Least mean square algorithms, Projection algorithms

I. INTRODUCTION

Interpolated finite impulse response (IFIR) filters are filters

whose impulse responses h ∈ R
L(K−1)+D can be written as

h = TSgf = TfSg,

where g ∈ R
K and f ∈ R

D . Furthermore, with ek denoting the

kth column of the K ×K identity matrix IK,

S =
[
e1 0K×(L−1) . . . eK−1 0K×(L−1) eK

]T
is a factor L upsampling matrix, and

TSg = [Sg]i−j+1 ∈ R
(L(K−1)+D)×D

and

Tf = [f]i−j+1 ∈ R
(L(K−1)+D)×(L(K−1)+1)

are the convolution (Toeplitz) matrices associated with the impulse

responses Sg and f .1 We only consider real filters for simplicity.

Any IFIR filter h = TfSg can be implemented as the convolution

with the model filter g, followed by an upsampling by a factor

of L, and the convolution with the interpolation filter f . Hence,

convolution with an IFIR filter of length L(K − 1) + D can be

implemented with a complexity of only O(K +D) floating point

operations (flops) per time slot, instead of O(LK+D) for a stan-

dard finite impulse response (FIR) filter of length L(K−1)+D [1].

IFIR filters are popular for the cheap implementation of filters with

This work has been supported by the DFG under grant BO 1734/5-2.
1We denote the element in ith row and jth column of any matrix A by

[A]i,j . For any v ∈ R
M , we set [v]k := [v]k,1 := 0 if k /∈ {1, . . . ,M}.

Fig. 1. Adaptive IFIR filtering / x(n): input; y(n): actual output;

d(n): desired output; f(n),g(n): FIR filters ; S: upsampling matrix

long but smooth impulse responses because then the approximation

loss that results from the restricted structure is usually low. Typical

application areas are acoustic echo cancellation [2] and channel

equalization [3], [4]. The design of IFIR filters however is more

complicated than in the standard unconstrained FIR case. In this

paper, we discuss adaptive IFIR filter design where the IFIR filter

is iteratively adapted to match some error criterion. Recent works

on this topic include [5], [6], [7]. In all these works, implicitly

some kind of alternating optimization is performed. The model and

interpolation filters are updated separately, where the model filter

is updated under the assumption that the interpolation filter is fixed

and vice versa. In contrast, we propose a new projection approach.

Instead of separate updates for the model and the interpolation filter,

we first perform a step of the standard least mean squares (LMS)

algorithm without the IFIR constraint and then project the result

back into the set of IFIR filters. This can be considered a joint

update of the model and interpolation filters.

We proceed as follows. First, projection onto the set of IFIR

filters is discussed (Sec. II). Then, we use these results in order to

derive a new projected LMS algorithm (Sec. III). A computationally

cheaper simplified variant of the algorithm is also established and

the new algorithms are compared with current approaches in terms

of complexity. Then, we investigate the performance of our new

algorithms (Sec. IV). Finally, the paper is concluded (Sec. V).

II. PROJECTION ONTO THE SET OF IFIR FILTERS
Let h̄ ∈ R

L(K−1)+D contain the impulse response of an FIR

filter. Then, we are interested in finding the best IFIR approxi-

mation of h̄ in the least squares sense. That is, find PLS(h̄) ∈
argminh=TfSg ‖h̄ − h‖2. Lin and Vaidyanathan have proposed

the following iterative approach to this problem [8]. Choose some

initial non-zero f(0) ∈ R
D (e.g., randomly), and iterate⎧⎨

⎩
g(n+ 1) = (Tf(n)S)

†h̄
f(n+ 1) = T†

Sg(n+1)h̄

h(n+ 1) = TSg(n+1)f(n+ 1)

. (1)

3741978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

Here, (·)† denotes the Moore-Penrose pseudoinverse. We note that

it is currently unclear whether the iteration really converges towards

some projection PLS(h̄), or whether the approach is suboptimal.

III. ADAPTIVE IFIR FILTERING
The adaptive IFIR filtering problem is depicted in Fig. 1. Let

x(n) =
[
x(n) . . . x(n− L(K − 1)−D + 1)

]T
denote the vector containing the past L(K − 1)+D inputs. Then,

the current output of the IFIR filter h(n) = Tf(n)Sg(n) is y(n) =
h(n)Tx(n). The current error becomes

e(n) = d(n)− y(n) = d(n)− h(n)Tx(n). (2)

Our goal is to adapt the model filter g(n) and the interpolation

filter f(n) such that this error becomes small.

III-A. Review of the Standard LMS Algorithm
Let us shortly discuss the standard least mean squares (LMS)

algorithm without IFIR constraint. This corresponds to Fig. 1 if

we assume that the gray box can be any FIR filter h. The LMS

algorithm tries to minimize the expected square error J
(n)
LMS(h) :=

E[|d(n)−hTx(n)|2] under the assumption that the d(n) are zero-

mean random variables and the x(n) are zero-mean random vectors

with covariance Rx(n) := E[x(n)x(n)T]. The basic idea is to

perform stochastic gradient descent. That is, we iterate

h(n+ 1) = h(n)− μ

2
∇J

(n)
LMS[h(n)]

= h(n) + μ[RdxT (n)−Rx(n)h(n)],

where μ > 0 is the step size and RdxT (n) := E[d(n)x(n)].
Using the instantaneous approximations Rx(n) ≈ x(n)x(n)T and

RdxT (n) ≈ d(n)x(n), we obtain the classical LMS algorithm:

h(n+ 1) = h(n) + μe(n)x(n). (3)

The initial guess can be chosen arbitrarily, but the usual choice is

h(0) = 0. We refer to [9, Ch. 10] for details on the LMS algorithm.

Finally, a word on the step size. Usually, a small fixed value is

chosen as step size. It has to be small enough to ensure stability

of the algorithm but it should be as large as possible in order to

ensure fast convergence. Let us define the a posteriori error

r(n) := d(n)− h(n+ 1)Tx(n).

Then, the LMS algorithm is stable in the sense that the absolute a

priori error |e(n)| is not larger than the absolute a posteriori error

|r(n)| if and only if μ ≤ 2/‖x(n)‖2 = 2/x(n)Tx(n) for all n.

(Check that |r(n)| = |1 − μ‖x(n)‖2||e(n)| in order to see this

[9, Ch. 10.4].) Motivated by this observation, one may replace the

constant step size μ in the LMS algorithm with a variable step size

of the form μ(n) = μ̄/(ε2 + ‖x(n)‖2), where 0 < μ̄ ≤ 2 and

ε > 0 is a small constant that stabilizes the iteration. The resulting

algorithm is known as the normalized LMS (NLMS) algorithm.

III-B. Projected LMS Algorithm
The impulse responses found by the LMS algorithm are not IFIR,

in general. One approach to overcome this problem is to project

the filters found by the LMS algorithm onto the set of IFIR filters.

Hence, we integrate an iteration of the approximate projection from

Sec. II. The projected LMS (P-LMS) algorithm reads:

⎧⎪⎪⎨
⎪⎪⎩

h̄(n+ 1) = h(n) + μe(n)x(n)

g(n+ 1) = (Tf(n)S)
†h̄(n+ 1)

f(n+ 1) = T†
Sg(n+1)h̄(n+ 1)

h(n+ 1) = TSg(n+1)f(n+ 1)

. (4)

Note that we have to initialize h(0) and f(0). We may choose

h(0) = 0, but f(0) should be non-zero in order to avoid a break

down of the algorithm. For example, choose f(0) at random. As

before, we obtain a normalized P-LMS (P-NLMS) algorithm if we

replace the constant step size μ in (4) with the variable step size

μ(n) = μ̄/(ε2 + ‖x(n)‖2). We note that this scaling means no

significant additional complexity if we use the update rule

‖x(n+ 1)‖2 = ‖x(n)‖2 + x(n+ 1)2 − x(n−KD)2. (5)

III-C. Simplified Projected LMS Algorithm
Next, we derive a cheaper variant of the P-LMS algorithm (4).
Approximation of the Pseudoinverses: We start with the expen-

sive pseudoinverses in (4). The g(n + 1) given in (4) can be

approximated as the solution of the regularized normal equation(
δ2I+ STTT

f(n)Tf(n)S
)

︸ ︷︷ ︸
=:Λ(n)

g(n+ 1) = STTT
f(n)h̄(n+ 1),

where δ is a small regularization constant [10, Sec. 5.1.1]. Thus,

g(n+ 1) = Λ(n)−1STTT
f(n)h̄(n+ 1)

= Λ(n)−1
(
STTT

f(n)h(n) + μe(n)STTT
f(n)x(n)

)
= Λ(n)−1

(
STTT

f(n)Tf(n)Sg(n)

+μe(n)STTT
f(n)x(n)

)
≈ g(n) + μe(n)Λ(n)−1STTT

f(n)x(n).

Here, we have used that h(n) = Tf(n)Sg(n). We approximate

Λ(n)−1 ≈
[
diag

(
δ2I+ STTT

f(n)Tf(n)S
)]−1

= (δ2 + ‖f(n)‖2)−1I,

and finally obtain

g(n+ 1) ≈ g(n) +
μ

δ2 + ‖f(n)‖2 e(n)S
TTT

f(n)x(n). (6)

Similar reasoning gives the following approximation for f(n+ 1)
if we additionally can assume that g(n+1) is very close to g(n):

f(n+ 1) ≈ f(n) +
μ

δ2 + ‖g(n)‖2 e(n)T
T
Sg(n)x(n). (7)

Approximation of the Matrix-Vector Products: Next, we will

use an improved version of the approximation technique described

in [7, (40)] in order to get rid of the matrix-vector products

STTT
f(n)x(n) and TT

Sg(n)x(n).
2 With w(−1) := 0L×1 and

v(−1) := 0LK×1, we can introduce the following two sequences:

w(n) :=

⎡
⎢⎢⎢⎣

1
‖g(n)‖g(n)

TSTx(n)

[w(n− 1)]1
...

[w(n− 1)]L−1

⎤
⎥⎥⎥⎦ , (8)

2The same technique is also used implicitly in [5], [6], and, according
to [7], also [11]. (The authors do not have access to [11].) Our variant is
improved by an additional normalization that neutralizes variations of the
norms in the g(n) and f(n) as n increases. Compare Sec. III-D.

3742

v(n) :=

⎡
⎢⎢⎢⎣

1
‖f(n)‖

[
f(n)T 0

]
x(n)

[v(n− 1)]1
...

[v(n− 1)]LK−1

⎤
⎥⎥⎥⎦ . (9)

If the filters g(n) and f(n) are slowly varying in time, we have

TT
Sg(n)x(n) =

⎡
⎢⎢⎢⎣

g(n)TSTx(n)
g(n)TSTx(n− 1)

...

g(n)TSTx(n−D + 1)

⎤
⎥⎥⎥⎦ ≈ ‖g(n)‖w(n),

(10)

and, similarly,

STTT
f(n)x(n) ≈ ‖f(n)‖STv(n). (11)

Application to the P-LMS Algorithm : With the previous results,

we see that the error e(n) in (2) is approximately equal to

ẽ(n) := d(n)− ‖g(n)‖w(n)T f(n). (12)

The simplified P-LMS (SP-LMS) algorithm results if we approxi-

mate the terms TT
Sg(n)x(n), S

TTT
f(n)x(n), and e(n) in (6) and (7)

as described in (10), (11), and (12), and consider the result exact:

{
g(n+ 1) = g(n) + ‖f(n)‖

δ2+‖f(n)‖2 μẽ(n)S
Tv(n)

f(n+ 1) = f(n) + ‖g(n)‖
δ2+‖g(n)‖2 μẽ(n)w(n)

.

(13)

The initial values g(0) and f(0) have to be non-zero. They can

be chosen at random. Finally, we obtain the simplified P-NLMS
(SP-NLMS) algorithm if we apply the same approximations that

were used in the derivation of SP-LMS to the NLMS algorithm:

{
g(n+ 1) = g(n) + ‖f(n)‖

δ2+‖f(n)‖2
μ̄ẽ(n)

ε2+‖x(n)‖2S
Tv(n)

f(n+ 1) = f(n) + ‖g(n)‖
δ2+‖g(n)‖2

μ̄ẽ(n)

ε2+‖x(n)‖2w(n)
(14)

III-D. Prior Approaches
Various authors have proposed alternative adaptive IFIR filtering

algorithms [11], [5], [6], [7]. We follow the exposition in [7].

We can run two separate LMS-like algorithms that minimize

the two expressions e(n) = d(n) − g(n)TSTTT
f(n)x(n) and

e(n) = d(n)− f(n)TTT
Sg(n)x(n) for the error independently:{

g(n+ 1) = g(n) + μ1e(n)S
TTT

f(n)x(n)

f(n+ 1) = f(n) + μ2e(n)T
T
Sg(n)x(n)

. (15)

This is the so-called doubly adaptive IFIR filtering (DAIFIR)

algorithm given in [7, Eqns. (37)+(38)]. The initial guesses g(0)
and f(0) have to be non-zero. The matrix-vector products in (15)

make the algorithm computationally expensive compared to the

standard LMS algorithm (3). Therefore, one may try to approximate

the products. The approximation technique used in the previous

subsection is an improved version of [7, (40)]. Instead of the vectors

w(n) and v(n), they consider the unnormalized variants ŵ(n) and

v̂(n) where the divisions by ‖g(n)‖2 and ‖f(n)‖2 in (8) and (9)

are omitted. Then, the matrix-vector products are approximated as

TT
Sg(n)x(n) ≈ ŵ(n) and STTT

f(n)x(n) ≈ v̂(n), and the error

becomes e(n) ≈ d(n) − ŵ(n)T f(n) =: ê(n). Insertion of these

approximations into the DAIFIR algorithm (15) results in a cheaper

simplified DAIFIR (S-DAIFIR) algorithm [7, Eqns. (42)+(43)]:{
g(n+ 1) = g(n) + μ1ê(n)S

T v̂(n)
f(n+ 1) = f(n) + μ2ê(n)ŵ(n)

. (16)

The initial values g(0) and f(0) have to be non-zero. The S-

DAIFIR algorithm (16) has initially been proposed by various

authors for constant step sizes μ1 and μ2 as well as for normalized

step sizes μ1(n) = μ̄1/(ε
2 + ‖ST v̂(n)‖2), μ2(n) = μ̄2/(ε

2 +
‖ŵ(n)‖2) [11], [5], [6], [7]. The normalized variant is sometimes

called the normalized S-DAIFIR (SN-DAIFIR) algorithm. A dif-

ficult question is how the step sizes should be selected, even for

SN-DAIFIR. Numerical experiments have shown that asymmetric

step sizes (μ̄1 �= μ̄2) can give superior performance [6, Sec. IV].

However, experimental optimization of asymmetric step sizes is a

very tedious process. Analytical expressions for the optimal step

sizes of SN-DAIFIR similar to the ones for NLMS (see, e.g.,

[9, Ch. 25.1]) seem to be unknown. Consequently, Batista et al.

have proposed to use symmetric step sizes (μ̄1 = μ̄2) so that

experimental step size selection becomes manageable [7, Sec. 3.3].

We note that as the gradient vectors in (14) and (16) are almost

the same, our new SN-PLMS algorithm can also be interpreted as

an analytical method to select asymmetric step sizes.

III-E. Comparison of Computational Complexities
We only compare the LMS with the simplified algorithms, as

they are the only O(K + D) algorithms. The approximated total

complexities (in flops per iteration) of the various algorithms are:3

LMS (3), NLMS 4LK + 4(D − L)

SP-LMS (13), SP-NLMS (14) 6K + 8D

S-DAIFIR (16), SN-DAIFIR 4K + 6D

.

The SP-LMS algorithm requires about 3/(2L) times the flops per

iteration of the standard LMS algorithm, but 3/2 times the flops per

iteration of the S-DAIFIR algorithm (assuming K � D ≥ L). The

normalized versions of the algorithms have approximately the same

costs because the values of ‖x(n)‖2, ‖ŵ(n)‖2, and ‖ST v̂(n)‖2
can be updated in O(1) using (5) or similar formulas, respectively.

IV. NUMERICAL EXAMPLES
First Example: We consider a system identification problem.

The impulse responses h̄ of the to be identified systems are

random combinations of a few low-frequency cosines combined

with an exponential power loss and a normalization.4 A couple

of typical impulse responses is depicted in Fig. 2 (bottom). The

configuration was K = 46, L = 3, and D = 4. The inputs

x(1), . . . , x(8000) of the adaptive filter were chosen as normally

distributed random variables. The desired outputs of the adaptive

filter are a noisy version of the systems outputs that correspond

to these inputs. That is, d(n) = h̄Tx(n) + 10−1η(n) for all

n = 1, . . . , 8000, where the η(1), . . . , η(8000) again denote

normally distributed random variables (the noise). Our optimality

3We assess M flops for the addition of two M × 1 vectors and a cost
of 2M flops for the corresponding inner product. The multiplication of a
N × M matrix and an M × 1 vector is assessed with 2MN flops. The
product of a scalar with an M × 1 vector is assessed with M flops. Purely
scalar and other operations are ignored. The structure of S is accounted for.

4Consult the source code of the examples for details: http://goo.gl/573z9.

3743

Fig. 2. First Example: Smooth Random Impulse Responses

criterion is the system identification error ‖h̄−h(n)‖2, where h(n)
denotes the approximation found by the respective adaptive filtering

algorithm in the nth iteration. We evaluated the evolution of the

identification error for the NLMS algorithm (μ̄ = 1), our new

P-NLMS and SP-NLMS algorithms (both μ̄ = 1), and the SN-

DAIFIR algorithm of [6] (we try various μ̄1 = μ̄2; cf. Sec. III-D).

Our focus however lies on the two cheap algorithms SP-NLMS and

SN-DAIFIR [both O(K +D)]. The regularization constants were

δ = ε = 10−3, and we have averaged over 10000 runs. The results

are shown in Fig. 2 (top). Our new SP-NLMS algorithm reduces

the error much faster than the SN-DAIFIR algorithm for any of the

tested step sizes μ̄1 = μ̄2. Step size tuning was not necessary for

SP-NLMS. We simply used the same step size as for NLMS.
Second Example: We want to identify a part of a real-world

room impulse response from the measurements described in [12].

Specifically, we consider the samples 800 to 1800 of the impulse

response 30x10y.wav measured in the classroom (omnidirectional).

See Fig. 3 (bottom). The general setup was the same as in the first

example, with a configuration of K = 500, L = 2, and D = 3.

We considered 20000 time slots, and averaged over 100 runs. The

simulation results are shown in Fig. 3 (top). The same observations

as in the previous example can be made. Our new filter reduces

the error faster, and step size tuning has not been necessary.

V. CONCLUSION
We have presented new adaptive IFIR filtering algorithms based

on an approximate projection into the set of IFIR filters. In

particular, we presented two new low complexity algorithms, SP-

LMS and SP-NLMS, with an complexity of only O(K+D) flops

per iteration. We have evaluated the performance of our new SP-

NLMS algorithm in numerical examples, where it has performed

significantly better than SN-DAIFIR with symmetric step sizes.

VI. REFERENCES
[1] Y. Neuvo, C.-Y. Dong, and S. Mitra, “Interpolated finite

impulse response filters,” IEEE Trans. Acoust. Speech Signal
Process., vol. 32, no. 3, pp. 563–570, 1984.

Fig. 3. Second Example: Real-World Room Impulse Response

[2] A. Abousaada, T. Aboulnasr, and W. Steenaart, “An echo tail

canceller based on adaptive interpolated FIR filtering,” IEEE
Trans. Circuit Syst. II, vol. 39, no. 7, pp. 409–416, 1992.

[3] R. C. de Lamare and R. Sampaio-Neto, “Adaptive interference

suppression for DS-CDMA systems based on interpolated FIR

filters with adaptive interpolators in multipath channels,” IEEE
Trans. Veh. Technol., vol. 56, no. 5, pp. 2457–2474, 2007.

[4] C. Meng and J. Tuqan, “High-performance low-cost DFE

using IFIR filters,” in Proc. Asilomar Conf. Sig. Syst. Comp.,
Pacific Grove, CA, Nov. 2007.

[5] R. C. Bilcu, P. Kuosmanen, and K. Egiazarian, “On adaptive

interpolated FIR filters,” in Proc. IEEE ICASSP, Montreal,

Canada, May 2004.

[6] R. C. de Lamare and R. Sampaio-Neto, “Adaptive reduced-

rank MMSE filtering with interpolated FIR filters and adaptive

interpolators,” IEEE Signal Process. Lett., vol. 12, no. 3, pp.

177–180, 2005.

[7] E. L. O. Batista, O. J. Tobias, and R. Seara, “New insights in

adaptive cascaded FIR structure: Application to fully adaptive

interpolated FIR structures,” in Proc. Eur. Signal Process.
Conf. (EUSIPCO), Poznan, Poland, Sept. 2007.

[8] Y.-P. Lin and P. P. Vaidyanathan, “An iterative approach to

the design of IFIR matched filters,” in Proc. IEEE ISCAS,

Hong Kong, 1997.

[9] A. H. Sayed, Adaptive Filters, Wiley, Hoboken, NJ, 2008.

[10] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Prob-
lems: Numerical Aspects, SIAM, Philadelphia, PA, 1998.

[11] M. D. Grosen, New FIR Structures for fixed and adaptive
digital filters, PhD thesis, UC Santa Barbara, CA, 1987.

[12] R. Stewart and M. Sandler, “Database of omnidirectional and

B-format room impulse responses,” in Proc. IEEE ICASSP,

Dallas, TX, Mar. 2010.

3744

