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ABSTRACT

In this paper we study parameter estimation for time series

with asymmetric α-stable innovations. The proposed meth-

ods use a Poisson sum series representation (PSSR) for the

asymmetric α-stable noise to express the process in a condi-

tionally Gaussian framework. That allows us to implement

Bayesian parameter estimation using Markov chain Monte

Carlo (MCMC) methods. We further enhance the series rep-

resentation by introducing a novel approximation of the series

residual terms in which we are able to characterise the mean

and variance of the approximation. Simulations illustrate the

proposed framework applied to linear time series, estimating

the model parameter values and model order P for an au-

toregressive (AR(P )) model driven by asymmetric α-stable

innovations.

Index Terms— Poisson sum series representation, con-

ditionally Gaussian, residual approximation, α-stable autore-

gressive process, Markov chain Monte Carlo

1. INTRODUCTION

A broad range of real-world phenomena exhibit outliers,

jumps and asymmetric characteristics, which cannot be ac-

commodated within the standard Gaussianity assumption.

For this reason α-stable distributions have attracted grow-

ing interest. Application areas are diverse, including radar

processing, telecommunications, acoustics and econometrics

[1, 2]. In all of these fields, time series models of the form

y = Gθ + v (1)

are in wide use. Here y denotes the observed data vector, θ
is a vector of unknown parameters, G is a fixed or unknown

basis matrix and v terms the innovations. Generalizing the

model by choosing the innovations as α-stable distributed al-

lows us to deal with heavy-tailed and skewed behaviour. In

particular, we focus on the autoregressive process driven by

�T. Lemke was supported by the Fraunhofer Institute for Industrial

Mathematics ITWM, Department of Financial Mathematics (Kaiserslautern,

Germany) .

stable innovations, i.e., G is such that

yn =

P∑
p=1

θpyn−p + vn, n = 1, ..., N, (2)

where N is the number of observations, although our method

is general and can be applied to many linear and non-linear

time series models. Most presented works concentrate on a

symmetric α-stable law and are not flexible enough to deal

with asymmetric behaviour. In the presence of symmetric

stable noise, Godsill and Kuruoǧlu [3, 4] introduced Monte

Carlo Expectation-Maximisation (MCEM) and MCMC

methods, which are based on the Scale Mixtures of Normals

(SMiN) representation of stable distributions. A method for

inference in models with symmetric Paretian disturbances

was proposed by Tsionas [5]. Kuruoǧlu [6] addressed

positive α-stable probability distributions, providing an

analytical approximation based on a decomposition into a

product of a Pearson and another positive stable random

variable. Inference for AR processes with possibly asym-

metric α-stable innovations have been presented by Gençaǧa

et al. [7] using a sequential Bayesian approach. Bayesian

inference for stable distribution parameters by exploiting

a particular representation involving a bivariate density

function was introduced by Buckle [8], and extended to time

series problems by Quiou and Ravishanker [9]. In this paper

we make use of the PSSR [10, Chapter 1.4, page 28] for

the α-stable noise process of a discrete-time AR time series,

which aims to provide a conditionally Gaussian framework.

By doing so we allow for Bayesian parameter estimation

using MCMC and Reversible Jump MCMC (RJMCMC)

methods [11], which can be applied to data with asymmetric

α-stable components.

The original contributions of this paper include a novel

residual method allowing the exact characterisation of the

mean and variance of the residual approximation (RA) in

contrast to our previous approach [12], which are then very

well approximated by a Gaussian with moments matched to

the residual (hence ‘near-exact’), as well as the use of the

PSSR to perform Bayesian MC inference for AR(P ) param-

eters, which cannot be found in the literature to date. Also

our representation is beneficial for distribution parameter
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estimation, which will be presented in future work.

The paper is organized as follows. In Section 2, we state

the definition and the PSSR of an α-stable law and random

variable, respectively. In Section 3, we introduce our resid-

ual approximation approach. In Section 4, we discuss in-

ference for AR models including the MCMC implementation

for model parameter and order estimation. In Section 5, we

present results of our work, and in Section 6, we conclude the

paper.

2. α-STABLE LAW AND SERIES REPRESENTATION

2.1. α-Stable Distribution

The α-stable family of distributions Sα(σ, β, μ) is identified

by means of the characteristic function [10]:

E[exp(itX)] (3)

=

{
exp(−σα|t|α[1− iβsign(t)tan(απ2 )] + iμt), α �= 1

exp(−σ|t|[1− iβ 2
π sign(t) ln |t|] + iμt), α = 1,

while closed-form density functions do not exist in general.

The four parameters are given by α ∈ (0, 2], which measures

the tail thickness; β ∈ [−1, 1] termed the skewness parame-

ter; σ > 0 and μ ∈ R denote the scale and location parameter,

respectively.

2.2. Poisson Sum Representation for Random Variables

The general series representation for random variables (r.v.)

as given in [10, page 28, Theorem 1.4.5] states that

∞∑
m=1

(
Γ−1/α
m Wm − k(α)m

)
, (4)

k(α)m =

{
0, 0 < α < 1
α

α−1 (m
α−1
α − (m− 1)

α−1
α )EW1, 1 < α < 2

(5)

converges almost surely to a Sα(σ, β, 0) r.v. with

σα =
E[|W1|α]

Cα
, β =

E[|W1|αsignW1]

E[|W1|α]
, (6)

where Cα = 1−α
Γ(2−α) cos(πα/2) ; Γm are arrival times of a unit

rate Poisson process; {W1,W2, ...} are some independent and

identically distributed (i.i.d.) random variables with finite ab-

solute αth moment, 0 < α < 2, α �= 1. The α = 1 special

case is omitted here due to space constraints. Equation (4)

gives us the possibility of choosing the Wm as i.i.d. normal

distributed, Wm ∼ N (μW , σ2
W ), whereby β and σα as in

(6) can be obtained by matching μW and σW values numeri-

cally. This leads us to a conditionally Gaussian form for the

Sα(σ, β, 0) distributed random variable X:

X|{Γm}∞m=1 ∼

N
( ∞∑

m=1

(μWΓ−1/α
m − k(α)m ), σ2

W

∞∑
m=1

Γ−2/α
m

)
. (7)

3. RESIDUAL APPROXIMATION

In practice the infinite series in (4) needs to be truncated at

some point m = M . In contrast to our previous approach to

residual approximation [12], where we truncated after a fixed

number of summation terms, here the summation terminates

once ΓM+1 exceeds a fixed value c (see Fig. 1). We then

approximate the small residual term
∑

m:Γm>c Γ
−1/α
m Wm as

Gaussian, which we have found to be empirically very good

for c sufficiently large. To this end, we study the remaining

summation terms by reverting to the Poisson process repre-

sentation of the Γms on a finite interval [c, d]. Specifically,

since {Γm} is a unit rate Poisson process, the number of the

Γs in the interval follows a Poisson distribution,

|{Γm; Γm ∈ [c, d]}| ∼ Poisson(d− c) for d > c, (8)

and each Γm is uniformly and independent distributed on

[c, d],
Γm ∼ U([c, d]). (9)

Then, taking the limit as d → ∞ accounts for all resid-

ual terms, from c to ∞. In order to compute the expecta-

Γ1 ΓΓ2 ΓM ΓM+1
. . . . . .

d → ∞c0

Fig. 1. Setup of the residual approximation approach

tion and variance of
∑

m:Γm∈[c,d](WmΓ
−1/α
m )] we work out

E[WΓ−1/α] and Var[WΓ−1/α]. The expected number of

summation terms equals (d − c) due to (8). Now, consid-

ering the summations of E[WΓ−1/α] and Var[WΓ−1/α] in

[c, d] as the right interval limit d tends to infinity we include

the subtraction of
∑d

m=1 k
(α)
m = μW

α
α−1 (d

α−1
α ) in the se-

ries representation, which forms the compensation term for

the otherwise divergent E[
∑

m:Γm∈[c,d](WmΓ
−1/α
m )] when

1 < α < 2. Hence, the conditionally Gaussian framework

for X ∼ Sα(σ, β, 0) becomes

X|{Γm}Mm=1 ∼ N (μX , σX
2), (10)

where

μX = μW

( M∑
m=1

Γ−1/α
m +

α

1− α
c

α−1
α

)
, (11)

σ2
X = σ2

W

M∑
m=1

Γ−2/α
m + (σ2

W + μ2
W )
( α

2− α
c

α−2
α

)
. (12)
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3.1. Evaluation of the Residual Approximation

The distribution parameters are set to α = 1.5, β = 0.8978,

σ = 2.3967 and μ = 0, which, according to (6), corresponds

to μW = 1 and σW = 1. Random variables obtained from

the asymmetric stable law, applying the Chambers-Mallows-

Stuck (CMS) method [13], served as a benchmark for our

comparison of the representations shown in Fig. 2. The new

residual approximation (new RA) with an average number of

summation terms of c = 80 shows an obvious improvement

to the previous residual approximation with a truncation at

M = 200 (old RA) and achieves results almost indistinguish-

able from the benchmark as can be seen in Fig. 2. Similar

improvements were obtained for a wide range of different α-

stable parameter settings.
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Fig. 2. Comparison of representations

4. INFERENCE

4.1. AR Model Parameter Estimation via MCMC

We first address the estimation of the parameters, θ, un-

der the assumption that the model order P is known. Out

of many possible MCMC strategies [14], we focus on the

approach with a Gibbs sampler here for simplicity. In the

jth iteration we first draw the model parameter vector θj

from the posterior given the observations, y, and Γj−1 :=
{{Γj−1

m,n}Mn
m=1}Nn=1 from the previous iteration, j − 1. Note

that there is one Γm for every observation n. In a second step,

given this draw, θj , and the observations, y, we sample Γj ,

i.e.,

θj ∼ π(θ|Γj−1,y), (13)

Γj ∼ π(Γ|θj ,y), (14)

where the second step is implemented as a Metropolis-

Hastings (M.-H.)-within-Gibbs. A conjugate prior frame-

work is assumed for the unknowns θ = (θ1, ..., θP )
′, thus

π(θ) = N (θ|μ,C). The full conditional posterior for θ can

be obtained as [15]

π(θ|Γ,y) = N (μ′,C′), (15)

where

C′ = (GTΣG+(C)−1)−1, μ′ = C′(GΣ(y−μvn)+C−1μ),

Σ = diag
[
σ−2
v1 , · · · , σ−2

vN

]
. (16)

The Gibbs sampler requires also the full conditional for Γ.

Since Γn := {Γm,n}Mn

m=1, n = 1, .., N are conditionally in-

dependent given vn = yn − gnθ, where gn is the nth row of

G, we obtain p(Γ|θ,y) =∏N
n=1 p({Γm,n}Mn

m=1|vn), where

π(Γn|vn) ∝ N (vn|μvn
, σ2

vn)× p(Γn), (17)

and μvn and σvn are according to (11) and (12), respectively.

The first step (13), can be performed straightforwardly from

(15) for the linear time series model. The second step (14) in-

volves the product of a normal likelihood and the prior distri-

bution of {Γm,n}Mn
m=1. If we choose the prior as the proposal

to a M.-H. step then the acceptance probability is obtained as

acc(Γn;Γ
′
n) = min

(
1,

N (vn|μ′
vn , σ

′2
vn
)

N (vn|μvn , σ
2
vn
)

)
. (18)

4.2. AR Model Order Estimation via RJMCMC

Additionally, we shall address the model order selection prob-

lem applying a reversible jump sampler [11, 16]. The model

move from the model order p to p′ is determined by q(p, p′).
Then, derived from the M.-H. procedure, the acceptance prob-

ability is given as

acc(p; p′) = min

(
1,

π(p′|Γ,y)q(p; p′)
π(p|Γ,y)q(p′; p)

)
, (19)

where

π(p|Γ,y) =
∫
θ(p)

π(p,θ(p)|Γ,y)dθ(p)

∝ π(p)

∫
θ(p)

π(y|p,θ(p),Γ)π(θ(p))dθ(p) (20)

is obtained analytically. π(p) denotes a discrete uniform prior

on the integers 1, ..., kmax. Two normals, π(y|p,θ(p),Γ) aris-

ing from the conditionally Gaussian innovations, and π(θ(p))
the conjugate prior, form the integrand.

5. RESULTS

A wide range of simulations have been carried out to validate

the MCMC/RJMCMC algorithm outlined above. To demon-

strate the effectiveness of the algorithm we provide here just

one single exemplary simulation. The innovations v are ob-

tained applying the CMS method using the same α-stable dis-

tribution S1.5(2.3967, 0.8978, 0) as in Section 3.1. We per-

form parameter estimation on a set of 100 data points syn-

thetically generated from an AR(5) model with parameters

θ = {3.54,−5.38, 4.38,−1.93, 0.36}. Fast convergence of

the model order and model parameters can be observed using

the representation, which includes our novel residual approx-

imation (Fig. 3 solid line, Fig. 4), while a model that simply

truncates the series (4) (Fig. 3 dashed line) reveals a devia-

tion from the true parameter values. These results demon-

strate successful parameter estimation for AR(P ) models with

heavy-tailed and skewed noise processes.
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Fig. 3. RJMCMC sampled AR model order p values for both

methods, with and without the RA.
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Fig. 4. Top: MCMC sampled AR model parameter values

θ1,...,θ5 using the method, which includes our RA. The true

parameters are marked by ‘*’. Bottom: Histograms from the

MCMC output for each parameter. The true parameter values

are given by the vertical lines.

6. CONCLUSIONS

We have shown that MCMC/RJMCMC, applied to our condi-

tionally Gaussian framework including the PSSR and a novel

RA, is a good method for inference. Our current work based

on the same framework is focused on inference for α-stable

distribution parameters.
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for time series with heavy-tailed symmetric alpha-stable

noise processes,” in Applications of Heavy Tailed Dis-
tributions in Economics, Engineering and Statistics,

Washington DC, USA, June 1999.

[4] S.J. Godsill, “MCMC and EM-based methods for infer-

ence in heavy-tailed processes with alpha-stable innova-

tions,” in In Proceedings of the IEEE Signal Processing
Workshop on Higher-order Statistics, Caesarea, Israel,

June 1999.

[5] E.G. Tsionas, “Monte Carlo inference in econometric

models with symmetric stable disturbances,” Journal of
Econometrics, vol. 88, pp. 365–401, 1999.
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