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ABSTRACT 
Blind channel estimation is a promising technique to reduce the 
pilot overhead. Unfortunately, most existing algorithms suffer 
from the scalar ambiguity problem, and hence only achieve semi-
blind identification. In this paper, we show that with the infor-
mation of source constellation, the phase of the ambiguous scalar 
can be divided into a fractional part and an integer part. Then we 
propose a multiple-constellation scheme enabling totally blind 
identification regardless of constellation type for OFDM systems. 
The necessary and sufficient condition for eliminating the scalar 
ambiguity is given. An application example shows that our scheme 
can help other algorithms circumvent the annoying ambiguity. 

Index Terms—Totally blind channel estimation, scalar 
ambiguity, multiple constellations, phase decomposition, OFDM.  

 
 

1. INTRODUCTION 
 

Blind channel estimation (BCE) is a promising technique to reduce 
the pilot overhead. Many excellent algorithms have been 
developed for orthogonal frequency division multiplexing (OFDM) 
systems, such as subspace method [3], cross-relation method [4] 
and finite alphabet method [5]. Despite their great success, one 
problem remains: those algorithms can often only estimate the 
channel up to an ambiguous scalar. Usually, a few pilots are 
required to remove the ambiguity [3]. Strictly speaking, they can 
only be called “semi-blind” in this case.  

To the best of our knowledge, only a few papers consider the 
totally blind channel estimation (TBCE) problem. Necker and 
Stuber proposed to use dual MPSK constellations for TBCE [7], 
but the channel can not vary too fast in the frequency domain. 
Necker and Sanzi tried a particular 8-ary minimum-error 
(8MiniErr) constellation [8], but no attempt was made for the 
general case. TBCE for Space-Time Block Coding systems by 
dual-constellation was rigorously discussed in [9], [10], but still 
only MPSK constellation was covered. So the feasibility of TBCE 
for other kinds of constellations, including widely used MQAM, 
remains unclear. On the other hand, some papers obtained results 
close to TBCE, though their motivations were not for it. Exploiting 
the finite alphabet property of input signals, Zhou and Giannakis 
[5] showed that the channel can be estimated up to a discrete phase 
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rather than a complex scalar for any constellation. Banani and 
Vaughan developed an interesting blind channel tracking 
algorithm [11], but a priori knowledge of the channel at the 
beginning of the sequence transmission is required. 

In this paper, we study the scalar ambiguity problem in BCE for 
OFDM systems. With the information of source constellation, we 
reexamine the identifiability of BCE, and show that TBCE is 
feasible for a class of constellations. Furthermore, if multiple 
constellations are used, e.g., adaptive modulation may be adopted 
to improve the spectrum efficiency, then TBCE can be achieved 
under mild condition, which allows for any kind of constellations, 
any number of constellations, and poses no restriction on their 
relative positions. 

 
2. PROBLEM STATEMENT 

 
In an OFDM system with N subcarriers, the input block 

0 1 1( ) [ ( ), ( ), ( )]Nn s n s n s ns  takes N-point IDFT, and cyclic 
prefix (CP) is appended to the front of the block, where n is the 
time index. The resulting sequence is transmitted through the 
channel. At the receiver, after CP removal and DFT operations, the 
received signal at the kth subcarrier is 

( ) ( ) ( )k k k ky n H s n w n      (1) 

where 0 1 1, , NH H HH  is the channel frequency response 

and wk(n) is white complex Gaussian noise with variance 2
w .  

 Many papers discuss the BCE problem for OFDM systems and 
achieve identifiability within some indeterminacy, e.g., a scalar or 
a discrete phase [3]-[5]. W.l.o.g., we treat the indeterminacy as a 
scalar. In this paper we focus on the ambiguity problem, and 
assume that the channel has already been estimated up to a scalar c 
independent of subcarrier index k, i.e., 

ˆ cH H    (2) 

Then in the absence of noise, (1) can be rewritten as 

( )( ) ( ) 0,1, 1ˆ
k

k k
k

y n
r n cs n k N

H
 (3) 

 
3. TOTALLY BLIND CHANNEL IDENTIFIABILITY 

 
It’s well known that BCE algorithms suffer from the ambiguity 
problem [3], [4]. If no a priori information of input signals is 
assumed, the ambiguity is an inherent problem [1]. Although those 
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algorithms can be applied to any constellation, the resulting 
ambiguity is unacceptable for signal detection. On the other hand, 
input signals are drawn from constellations. Can we design an 
algorithm, which can totally blindly estimate the channel and still 
apply to any constellation with this additional information of 
source constellation? This question motivates our study on TBCE.  

Identifiability plays an important role in BCE. Instead of 
discussing identifiability for specific algorithms, we are more 
interested in whether the channel can be identified directly based 
on the observation. Let ss  be the input signal,  be the 
deterministic parameter to be estimated, where  and s  are 
their domains respectively; y be the noiseless observation with 

;fy s , where ( ; )f  denotes the system transfer function. 
Suppose that s is treated as a deterministic vector. Consistent with 
[2], is said to be identifiable if we have 

 1 1 2 2 1 2 1 2; ;  for some , sf fs s s s  (4) 

Otherwise it is said to be not identifiable. Similar notion was 
discussed for the statistical model in [1]: is said to be identifiable 
if it can be identified from the distribution of y; otherwise it is said 
to be not identifiable. 

If not identifiable, the parameter can not be identified by any 
algorithm [2]. If identifiable, at least an algorithm can identify the 
parameter like exhaustive search (see [2] for more discussions).  

In this section, we ignore the noise and investigate the identifi-
ability in BCE with the information of source constellation. We 
assume that s  is known a priori and restricted to constellations, 
i.e., 0 1 1Ls , where L is the size of s. 
3.1. Illustrative Examples 

Here we illustrate our main idea by some examples. For the sake 
of clarity, we consider only one subcarrier s0(n). From (3),  

0 0( ) ( )r n cs n     (5) 

Suppose that s0(n) is drawn from BPSK {-1, 1}. With a sample 
4

0(0) 2 jr e , we can infer that the amplitude of c is 2 and the 
phase of c is  or 5 , depending on whether s0(0) is 1 or -1, 
i.e., 

abs 2
arg 4 0,1

c
c K K

  (6) 

where arg(•) denotes the phase of a complex number. So the 
amplitude is determinable. For the phase, the first term can be 
determined, while the second term is ambiguous. Moreover, it is 
easy to verify that the ambiguity in (6) does not vanish no matter 
how many samples are exploited. The ambiguity can be seen, 
intuitively stemming from the constellation  itself: the scalar c 
amplifies  by 2, rotates it by and then rotates it by K . The 
last step is ambiguous because the shape of received signals in the 
scatter plot keeps unchanged for any integer K, which implies that 
the rotation symmetry property of source constellation results in 
the ambiguity. 

The same principle also applies to other constellations. Take 
16-QAM for example, although it looks totally different from 
BPSK, similar symmetry property holds, as illustrated in Fig. 1, 

 
Fig. 1 Ambiguity for 16-QAM 

Those examples show that we can determine the amplitude and 
the first phase term, while the second phase term is ambiguous. 
Besides, the ambiguous phase term is discrete and is integer 
multiple of some specific quantity, so it is called integer phase. 
The determinable phase term is continuous and is smaller than the 
integer phase, so it is called fractional phase.  

3.2. Symmetry Set and Phase Decomposition 

Here we quantify the rotation symmetry property. A constellation 
is defined as a finite set of points in the complex plane with 

more than one element. So 2 , where •  denotes 

cardinality. Denote :c cs s  the product of c and . 

Definition 1: A phase  is called symmetric to a constellation  
if  

je           (7) 

Denote S the set of all the symmetric phases for which 
0 2 , called the symmetry set. 

Intuitively,  is a symmetric phase of , if  is invariant under 
a rotation of a phase . The symmetry set is non-empty because 

0  always belongs to the set. Different constellations may have 
the same symmetry set if they have the same rotation symmetry 
property. The symmetry sets for some constellations are given as 
follows: MPAM, 0,=S ; MPSK, 1

0= 2S
M
n

n M ; square 

MQAM, 0, 2 3= , , 2S ; and 8MiniErr [8], S = {0} since 
it does not have rotation symmetry property. The following 
theorem characterizes the structure of S. (Due to space limitation, 
proofs of three theorems in Section 3 appear in the full paper [12].) 

Theorem 1: The symmetry set S of any constellation  is finite, 
i.e., S SQ . Moreover, S can be expressed in terms of QS 
in the following form, 

1
02S S

Qs
nn Q   (8) 

Theorem 1 shows that all constellations have similar type of 
rotation symmetry property as that of MPSK constellations, and 

S is determined by a single parameter QS. We call QS the 
symmetric number of constellation  hereafter. From Theorem 1, 
any phase 0,2  can be uniquely decomposed into the sum 
of a fractional part and an integer part in terms of QS, 

2 SK Q      (9) 

where 0,2 SQ  and {0,1, 1}SK Q . We can understand 

(9) as the division of  by 2 SQ . Hence the values of  and K are 
constellation-dependent. Then fractional phase and integer phase 
can be formally defined as: 
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Definition 2: Decompose arg( )c  like (9) in terms of QS of 
constellation . Then,  is called the fractional phase, and K the 
integer phase, with respect to . 

3.3. Signal Design for TBCE 

Now we discuss the identifiability of the scalar c in BCE and its 
relationship with the structure of the constellation. In the literature, 
the input signal is often assumed to be either statistical or 
deterministic: 
A0) ( )

n
ns  is treated as a sequence of random vectors. They are 

drawn independently, identically and equally likely from 
constellations, and 0 1 1( ), ( ), ( )Ns n s n s n  are also independent. 

Besides, the distributions of yk(n) are known, 0,1, 1k N . 
A1) ( )

n
ns  is treated as a sequence of deterministic vectors. They 

take values from constellations. Besides, they are sufficiently long 
in the time index n. 

Let us first consider the case when one constellation is used. 
Theorem 2: Let all sk(n) use the same constellation , 

0,1, 1k N . Under either A0) or A1), both the amplitude and 
the fractional phase of c can be uniquely determined, while the 
integer phase has QS possible values. In particular, c is identifiable 
if and only if 

1SQ                (10) 

Theorem 2 not only shows that the rotation symmetry property 
of source constellation results in the ambiguity of c, but also gives 
a quantitative description. As a byproduct, we obtain the necessary 
and sufficient condition for TBCE with one constellation. 

Unfortunately, (10) is a stringent constraint, which excludes 
widely used MPSK, MPAM and square MQAM constellations. On 
the other hand, adaptive modulation may be employed to improve 
the spectrum efficiency, where different subcarriers may choose 
different constellations according to channel conditions [5]. Then 
an interesting question is: can the channel be totally blindly 
identified with multiple constellations under a milder condition? 
We have the following necessary and sufficient condition.  

Theorem 3: Let each sk(n) use constellation k respectively, 
0,1, 1k N . Under either A0) or A1), c is identifiable if and 

only if 
10 1gcd , , 1NQ Q Q          (11) 

where Qk is the symmetric number of k, and gcd(•) denotes the 
greatest common divisor.  

The multiple constellations k are not necessary distinct, e.g., if 

2 1N  is 16-QAM with 4SQ , 0  is 5-PSK with 

0 5Q , 1  is 4-PAM with 1 2Q , the scalar c is identifiable. 
Note that none of those constellations satisfies (10), i.e., c becomes 
identifiable under a mild condition when multiple constellations 
are used. In the presence of virtual carriers, (11) should be read as 
that the symmetric numbers of constellations in all data subcarriers 
are coprime.  

Once the scalar c is determined, the ambiguity is eliminated and 
traditional BCE algorithms become totally blind ones. Our totally 
blind scheme can be formally summarized as follows: 

Proposed Scheme: Select one constellation satisfying (10); or 
select multiple constellations satisfying (11). 

Note that 8MiniErr constellation satisfies (10), which is the 
case discussed in [8]. Our scheme is motivated by [7] and [9]. But 
they only dealt with dual constellations, and only MPSK 
constellations were discussed. 

 
4. ALGORITHM DESIGN  

 
In this section, we develop algorithms to blindly estimate the 
scalar c. We factorize it into amplitude c , fractional phase  and 
integer phase K with respect to the first constellation , i.e., 

exp( )exp 2c c j K Q              (12) 

where Q is the symmetric number of , then deal with them 
respectively. The amplitude can be readily obtained by SOS. Here 
we focus on the estimation of  and K. 

4.1. Fractional Phase Estimation 

According to Theorem 2, the fractional phase can be identified 
from data using  solely. Treating input signals as deterministic 
quantities, we maximize the likelihood function of yk(n) 

, ( )

2
2 2, ( ) 1

22
, ( )1

2

( )1

max ( ) | , ( )

1 1 ˆmax max exp ( ) ( )

ˆmin min ( ) ( )

ˆmin min ( ) ( )

k k k
h s nk

L

k k k
K s nk n w w

L
j jK Q

k k k
K s nkn

L
j

k k k
s nkn

p y n H s n

y n cH s n

y n c e e H s n

y n c e H s n

     (13) 

where L is number of OFDM blocks and p  is the likelihood 
function. The last equality follows from the property of integer 
phase. If data of multiple subcarriers are available, similarly 

2

1 ( )

22
1

ˆ ˆarg min min ( ) ( )

ˆ ˆarg min ( ) ( )

L j
ML k k kk n s nk

L j
k k kk n

y n c e H s n

H r n e c s n

 (14) 

where 
2

( )
ˆ ( ) arg min ( ) ( )j
k k k

s nk
s n r n e c s n , and  is the set of 

subcarrier indices on which  is used. Because the noise is 
independent in the frequency domain, the search is decoupled and 
the complexity of (14) is linear with data length, while ML 
estimations typically require exponential complexity [9], [10]. The 
summation in (14) is weighted by the channel power, so it is robust 
to deep fading in some subcarriers. Similar to the proof of 
Theorem 2, we can show that (14) has a unique solution of  in the 
absence of noise if s(n) is sufficiently long in the time index n. 

4.2. Integer Phase Estimation 

If one constellation is used and satisfies (10), the integer phase 
0K ; if multiple constellations are used and satisfy (11), 

estimation of K is needed. For simplicity, suppose that s0(n) uses a 
second constellation  which is MPSK with TP . 
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(Discussions for the general case are given in [12].) Decompose 
arg(c) with respect to  and  respectively,  

arg( ) 2
arg( ) 2

c K Q

c K P
   (15) 

If  is known or estimated, and the Pth-order statistics of r0(n) is 
available, K can be obtained with the help of [9, Lemma 4] 

1 1Q QK uP Q uP Q   (16) 

where 0
1 arg ( )

2
PPQ

u r n
P

 is an integer;  denotes 

mathematical expectation; m  is the greatest integer not exceeding 
m; (m) is the Euler phi-function defined as the number of positive 
integers which are coprime to m and not larger than m. Although 
relying on HOS, we can still expect good performance of (16) 
because the statistic averaging becomes deterministic for MPSK. 
 

5. APPLICATION TO AN EXISTING ALGORITHM 
 

We have provided a general approach to investigate the scalar 
ambiguity in BCE, so our TBCE scheme can help lots of existing 
algorithms with this problem. Due to space limitations, we only 
illustrate it to the subspace method developed by Muquet et al 
which achieves identifiability within a scalar indeterminacy [3].  

It is straightforward to apply our scheme to [3]. We test our 
scheme in an N = 64 subcarriers OFDM systems which essentially 
follows HIPERLAN/2 and IEEE 802.11a standards. The CP length 
is 16 samples long. 12 subcarriers are virtual carriers and are 
distributed evenly at the spectrum edges. Among 52 data 
subcarriers, 4 subcarriers {12, 26, 40, 54} use  = 3-PSK and other 
48 subcarriers use  = 16-QAM. Note that no pilots or known 
OFDM blocks are available at the receiver. The scalar c is 
factorized with respect to 16-QAM. The channel coefficients are 
drawn from i.i.d. complex Gaussian random variables with unit 
variance. Results shown are the average of 3000 Monte Carlo trials. 
With perfect channel knowledge, the best scalar which minimizes 
the normalized mean square error (NMSE) over all possible values 
of c can be calculated by the method in [6], and we use it as the 
reference curve for comparison purpose. Note that no a priori 
knowledge of the channel is required by our scheme.  

Fig. 2 shows the NMSE performance of our algorithms, where 
“SS ref” stands for [3] with [6] and “SS TBCE” denotes [3] with 
our scheme. It can be seen that the TBCE algorithm suffers very 
little SNR loss compared with the optimal NMSE when the SNR is 
higher than 25 dB. With lower SNR, TBCE degrades gracefully. 

 
6. CONCLUSION 

 
In this paper, we discuss the scalar ambiguity problem in BCE for 
OFDM systems with the information of source constellation. By 
decomposing the phase of the ambiguous scalar into a fractional 
phase and an integer phase, we give a quantitative relationship 
between the ambiguity of the scalar and source constellation when 
one constellation is used. A multiple-constellation scheme is 
proposed, in which the channel can be totally blindly identified 
with no need for any pilots or training sequences under mild 
condition regardless of constellation type.  
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Fig. 2 NMSE of TBCE for subspace method 
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