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Abstract—The traditional Heisenberg-Weyl measure quantifies
the joint localization, uncertainty, or concentration of a signal
in the phase plane based on a product of energies expressed as
signal variances in time and in frequency. Unlike the Heisenberg-
Weyl measure, the Hirschman notion of joint uncertainty is based
on the entropy rather than the energy [1]. Furthermore, its
definition extends naturally from the case of infinitely supported
continuous-time signals to the cases of both finitely and infinitely
supported discrete-time signals, and, as we noted in [2], the
Hirschman optimal transform (HOT) is superior to the discrete
Fourier transform (DFT) and discrete cosine transform (DCT)
in terms of its ability to separate or resolve two limiting
cases of localization in frequency, viz pure tones and additive
white noise. In this paper we implement a stationary spectral
estimation method using an orthogonal matching pursuit method
whose dictionary members are constructed from the combination
of HOT-based and DFT atoms (elements) [3] in combination
with the interpolating procedure developed in [4]. We call the
resulting algorithm the smoothed HOT-DFT periodogram. We
compare its performance (in terms of frequency resolution) to
Quinn’s smoothed periodogram. In particular, we compare the
performance of the HOT-DFT with that of the DFT in resolving
two close frequency components in additive white Gaussian noise
(AWGN). We find the HOT-DFT to be superior to the DFT in
frequency estimation, and ascribe the difference to the HOT’s
relationship to entropy.

Index Terms—Hirschman Optimal Transform, Orthogonal
Matching Pursuit, Periodogram, Quinn’s method

1. INTRODUCTION

IN earlier work, [5] introduced an entropy-based measure Up

that quantifies the compactness of a discrete-time signal in

the sample-frequency phase plane that allowed us to overcome

the limitations inherent to discretizing the Heisenberg uncer-

tainty. A naïve discretization of the Heisenberg uncertainty

leads to a discrete measure that fails to preserve translation

invariance and is therefore not useful. The entropy-based

measure showed that discretized Gaussian pulses may not be

the most compact basis with respect to joint time-frequency

resolution. In [1], we found a basis (HOT transform) that is or-

thonormal and uniquely minimizes the discrete-time, discrete-

frequency Hirschman uncertainty principle. For comparison,

we found that a discretized Gaussian pulse has an uncertainty

Up that is greater than that of the HOT basis functions [2].

The question we ask is: Can this improved localization of
the HOT be used to improve spectral estimation techniques
that currently use the DFT? Using the HOT and DFT we

first develop a smoothed HOT-DFT periodogram, and then

compare its performance to that of the smoothed periodogram

of Quinn that uses only the DFT. Our experiment is to

distinguish two closely-spaced frequency components with

different amplitude ratios embedded in AWGN. We observe

that, after thresholding, the smoothed HOT-DFT estimated

spectrum is superior to the DFT when the signal-to-noise ratio

(SNR) is as low as 0 dB.

In this paper, we briefly review the HOT; then we develop

an orthogonal matching pursuit algorithm for estimating the

power spectrum of a signal that uses Quinn’s method [4],

where the elements of the dictionary are derived using both the

HOT and the DFT. We then compare the performances, and

we find that using the HOT basis can significantly improve

performance above that of current state-of-the-art methods.

2. THE HIRSCHMAN OPTIMAL TRANSFORM

Fix a finite set of nonnegative integers D =
0, 1, 2. . . , N − 1. Let HN denote the Hilbert space of

sequences x : D → C with squared-norm

‖x‖22 =
N−1∑
n=0

|x [n]|2

Using WN = e−j(2π/N), the DFT is

XD [k] = Fx [n] =
1√
N

N−1∑
n=0

x [n]Wnk
N , k ∈ D (1)

This defines an isometry on HN with inverse given by

x [n] =
1√
N

N−1∑
k=0

XD [k]W−nk
N

By the digital phase plane, we mean the set of all points

(n, k) ∈ D ×D. The translation and modulation operators

(see [2] for details) allow us to view the entire digital phase

plane. Hirschman Uncertainty uses entropy instead of energy.

For x ∈ HN with ‖x‖2 = 1, the (Shannon) entropy is

S(x) = −
N−1∑
n=0

|x [n]|2 ln
(
|x [n]|2

)
Note that this entropy is defined on the pseudo-density deter-

mined from the normalized-energy signal, and not from any

statistical definition. Using this entropy, we define a general

class of digital uncertainty measures for 0 ≤ p ≤ 1:
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Up(x) = pS(x) + (1− p)S(Fx), x ∈ HN , ‖x‖2 = 1. (2)

In the special case where p = 1
2 , the measure (2) is called

the digital Hirschman uncertainty [2]. Before describing the

minimizers of (2), we define periodization:

Definition 1. For N = KL, the periodization of v ∈ C
k is

defined as x [sK + n] = (1/
√
L)v [n] for 0 ≤ s ≤ L− 1 and

0 ≤ n ≤ K − 1. We refer to the sequence v ∈ C
k given

by v [0] = 1, v [1] = 0, · · · v [K − 1] = 0, as the Kronecker

delta or impulse (unit sample) sequence, without specifying

the signal length K. We proved the following theorem in [1]:

Theorem 2. The only sequences x ∈ C
k, with ‖x‖2 = 1 ,

for which U 1
2
(x) is minimal are obtained from the Kronecker

delta sequence by applying any composition of periodization,
translation, modulation, the DFT, and multiplication by a
complex number of unit magnitude.

3. HOT/DFT SPECTRAL ESTIMATION USING

ORTHOGONAL MATCHING PURSUIT AND QUINN’S

METHOD

We use the K-dimensional DFT kernel as the originator

signals for our N = K2-length HOT basis. Each of these

basis functions must then be shifted and up-sampled to yield

the orthogonal basis functions that define the HOT. This

choice leads to an efficient computational structure (growing

as
√
N = K) as compared to the N -point DFT. This DFT

kernel can also produce transforms for other factorizations

N = KL,K �= L, but these possess an uncertainty Up that

varies as a function of p and are suboptimal in this sense [1].

In general [1], we have the analysis

XH [Kr + l] =
1√
K

K−1∑
n=0

x [Kn+ l] e−j 2π
K nr,0 ≤ r, l ≤ K−1.

and the synthesis

x [Kn+ l] =
1√
K

K−1∑
r=0

XH [Kr + l] ej
2π
K nr,0 ≤ n, l ≤ K−1.

Note the similarities and differences of the HOT and DFT.

One may think of the HOT as a “1-1/2 dimensional DFT” [2]

in the sense that the equations for the HOT look like DFT’s

along the rows (or columns) of a data matrix.
Next we will show how we use the HOT to get a spectral

estimate. To simplify the notation, define XD = Fx, where

x is the input signal, F is as in Eq. (1), and XD denotes the

DFT coefficients. Similarly, we define XH = Hx, where H
is the HOT. The HOT coefficients can be directly transformed

into a set of frequencies by noting that the input signal can be

expressed either as x = F−1XD or as x = H−1XH . Thus,

XD = FH−1XH and XH = HF−1XD. Since both F and

H are unitary, F−1 = F ∗ and H−1 = H∗. Let the signal

length be L and B = FH−1. Then the periodogram is:

PD =
1

L
diag

(
|XD|2

)
=

1

L
diag

(
B |XH |2 B−1

)

Now consider an M -point signal x � [x1, x2, · · ·xM ] where

each sub-sequence is L samples long. We build the average

periodogram estimators:

P̂D =
1

M

M∑
m=1

PD(xm)

=
1

ML

M∑
m=1

diag
(
|XD|2

)
(3)

or

P̂H =
1

M

(
M∑

m=1

1

L
diag

(
|BXH |2

))
(4)

From our derivation of PD, one can see that P̂D of Eq.

(3) and P̂H of Eq. (4) are different estimates of the same

spectrum. Our purpose here in this paper is to compare
their relative performances. The Periodogram estimator P̂D

is extremely well-known and studied. All of its statistical

foibles are unaltered in this presentation. For purposes that

will become evident slightly later, we define a dictionary D1

that is a realization of the ideal power spectra of a pure

tone (single sinusoid). D1 realizes the periodogram estimate if

every component is used. Similarly, from the definition of P̂H ,

we build DH suitable for P̂H that incorporates the sequency

to frequency conversion, i.e.

DH =
√
LB−1

The
√
L scale merely normalizes the energy in each ele-

ment. For our analysis, we use the over-complete dictionary

D2 = [D1 DH ]. For convenience, we use the acronym

DFT to denote estimation using D1 only (the periodogram),

and HF to denote estimation using D2 = [D1 DH ] in an

orthogonal matching pursuit [3] algorithm. First, however, we

must present a complete spectral analysis method.

Quinn studied the power spectrum problem using the DFT

in the 1990’s [4]. In that work, sinusoids in noise are modeled

using an ARMA (p, q), where p and q are order of the

AR (Autoregressive) part and MA (Moving Average) part

respectively:

p∑
m=0

amx [n−m] =

q∑
m=0

bmν [n−m]

The parameters of the hybrid model are the am and bm, x [n] is

the time series data for n ∈ [0, N − 1], and ν [n] is white noise

with zero mean and finite variance. The signal is assumed to

be (with discrete frequencies ωk ∈ (0, π)):

x [n] =

p∑
k=1

ρk cos (ωkn+ φk) + ν [n]

where the ρk and φk are the amplitude and initial phase

of the kth sinusoid. The special ARMA(2p, 2q) system that

annihilates each sinusoidal component in x [n] occurs when

the parameters am = bm = βm satisfy

2p∑
m=0

βmzm =

p∏
m=1

(
1− 2z cosωm + z2

)
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and

β2p−m = βm(m = 0, . . . , p− 1), β0 = 1

Quinn’s “smoothed periodogram” results when x [n] =
ρ cos (ωn+ φ) + ν [n] is annihilated:

κN (ω) =

∫ π

−π

Px(λ)μN (ω − λ)dλ (5)

Here, Px(λ) is the periodogram of x [n] and μN (ω) =∑N−1
k=1 k−1 cos(kω) is the kernel (or window) function. The

smoothed periodogram is the convolution of Px(λ) and the

kernel. The key point of Quinn’s method is: κN (ω) in Eq. (5)

gives accurate frequency estimation without significant zero

padding while simultaneously removing nearly all side lobes

(refer to Fig. 2). Sometimes, this method is referred to as an

interpolated periodogram.

Our spectral estimation methods are thus developed by first

using the orthogonal matching pursuit using D1 to approxi-

mate Eq. (3), followed by the smoothed periodogram of (5)

and comparing it to the new HOT-based method using D2 in

the same approach. The first approach is the “DFT” approach

to spectral estimation, the second is the “HOT” approach.

More details can be found in [6].

4. SIMULATIONS

We consider two pure tone signals, s1 [n] =
A1 cos [2πf1/fsn] and s2 [n] = A2 cos [2πf2/fsn]. The

length of the signal, N , is set to 256 for efficiency of

calculation. The sampling frequency fs = 1000 Hz The

signal to be estimated using the orthogonal matching pursuit

method is y [n] = s1 [n]+s2 [n]+v [n] , where v [n] is ZMWG

noise. Our results are averaged over T = 100 different noise

realizations. In all applications of orthogonal matching

pursuit, the dictionary is redundant. The stopping criterion,

i.e. how many elements are selected for the representation, is

critical. As we see in Fig. 1, the P̂D performance is worse

than P̂H for all selections (<40) that include more than 6

elements, only achieving parity near the complete L = 256.

In this case, f1 = 61 Hz, f2 = 68.8 Hz, the SNR is 15

dB, and the amplitude ratio A1/A2 is 1/2 . After applying

orthogonal matching pursuit the performance of the algorithm

is determined via the Relative Power of Error (RPE):

RPE =
1

T

T∑
i=1

∑N−1
n=0 |yi [n]− ŷi [n]|2∑N−1

n=0 |yi [n]|2

where yi and ŷi are the measured and reconstructed signals

with ith noise respectively.

For each reconstruction, we apply Quinn’s method followed

by a peak picking process to determine the frequencies f1 and

f2. Also, we interpolate the spectral estimates via zero padding

to a level sufficient to eliminate any “picket fence” in Quinn’s

method. Both the DFT and HF have bad resolution when less

than 10 dictionary elements are used. We use 18 elements in

the following figures for convenience.

Fig. 2 shows the spectral estimates for the case in Fig.1.

Note that the DFT estimate shows no low frequency peak,

though the zoomed view does show that “something” is
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Figure 1. RPE (dB) vs. n (Number of dictionary elements)

Figure 2. Power Spectrum Densities for f1 = 61 Hz, f2 = 68.8 Hz

happening. In fact, when more elements are chosen, the lower

frequency peak for the DFT is gradually shown, but it is

still only showing a small peak when compared to the HF

peak. Another thing to note is: the measured f2 peak value

from HOT-DFT is more accurate than that from DFT. We

have another example that shows an even more significant

difference in [6]. The two PSD estimates are only identical

when the two curves in Fig.1 coincide. Furthermore, the HF

algorithm selects dictionary elements from DH after the first

few selections (that come from D1). In fact, when 25 dictio-

nary elements are used, over 40% of the selected dictionary

elements are from DH , and this increases to nearly 50% by

the time 50 elements are used in the algorithm.

To compare the two methods, we use the Normalized Mean

Square Error (MSEn) of the peak positions of f1 and f2:
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MSE =
1

T − 1

T∑
i=1

(xi − x̄)2 + (x̄− f)2

where xi are the estimated frequency values with the ith noise,

f is the vector of true frequencies, and x̄ = 1
T

∑
xi. We

normalize by the true frequencies, i.e. MSEn = MSE
ftf .

The frequency separation �f is 7.8 Hz in Fig.2. If we

fix f1 = 61Hz, and vary �f between 6.5 Hz and 9 Hz,

we observe the frequency resolution in a different way. Fig.3

shows that the MSEn of the HF is much smaller than that

of the DFT with SNR=15 dB when 18 elements are selected

from the dictionary, especially 7.7 ≤ �f ≤ 8 Hz. When

�f is less than 7.6 Hz, both methods degrade, though the

DFT performance decrease is more severe. For frequency

separations greater than 8 Hz, the methods behave similarly

as expected though HF yields more accurate estimation. Note

that when MSEn is 0dB, the frequency is missed, i.e. there

is no peak as in the case of the lower frequency 61Hz for the

DFT case of Fig.2.
The MSEn performance of the HF is superior and the

difference is more pronounced with small SNR, which is

consistent with the prediction in [2]. That the HOT can perfom

better in moderate and low SNR environment is very important

in practical applications. Suppose that we change the SNR

from −2 dB to 30 dB while keeping all other parameters

unaltered; this comparison is shown in Fig. 4. We can clearly

see that the performance of HF is always better than that of the

DFT over the entire SNR range. We find that with increasing

SNR, the MSEn of the HF drops at a much lower SNR. Even

when the SNR ≥ 17 dB the HF still performs better than does

the DFT. Changing the base (lower) frequency does not alter

the relative performance substantially.
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Figure 3. MSEn of two frequency components with increasing frequency
separation �f

5. CONCLUSIONS

This paper introduces a method of nonparametric spectral

estimation based on the HOT that uses orthogonal matching
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Figure 4. MSEn of two frequency components with SNR

pursuit and Quinn’s method. Our results clearly show that the
impact of our choice of transform is critical. Specifically, we

develop a dictionary generated with a combination of the HOT

and DFT operations which we call the HF dictionary to cal-

culate the smoothed periodogram with Quinn’s method. When
compared to the DFT-only standard periodogram method,
the power spectrum generated with our proposed method
is superior over varying SNR, amplitude ratios, frequency
separation, and number of elements used in the orthogonal
matching pursuit algorithm. We have answered our question in

the introduction – using the entropy based HOT does improve

the frequency resolution over the very similar DFT based

spectral estimation techniques. Our main point is to compare

the algorithm resolutions, not the computational complexity.

Future work must be done to determine an automated method

for stopping the orthogonal matching pursuit algorithm, as well

as for the peak determination.
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