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ABSTRACT

The uncertainty principle is an important and powerful tool,
with many applications in signal processing. This paper presents
two concentration uncertainty principles for signals on the sphere
which relate the localization of the concentration of a signal in spa-
tial and spectral domains, as an analogue of the general Donoho
and Stark uncertainty principles in time-frequency analysis. Using
the spherical and spectral truncation operators, we derive the L1-
norm and L2-norm uncertainty principles which respectively relate
the signal concentration in spatial and spectral domains as absolute
value and the energy of a signal. We also analyze the sharpness of
the bound imposed by the derived L2-norm uncertainty principle.
The proposed uncertainty measures can be applied to signal process-
ing problems on the sphere.

Keywords: uncertainty principle, unit sphere, bandlimited signals,
Slepian concentration problem, signal extrapolation.

1. INTRODUCTION

The uncertainty principle, originating from quantum mechanics, is
an important and powerful tool in signal processing [1]. In time-
frequency analysis, the classical (Heisenberg) uncertainty principle
states that a function and its Fourier transform cannot be simulta-
neously well localized, i.e. they cannot be largely concentrated on
intervals of small measure. A more general notion of uncertainty,
herein referred to as concentration uncertainty principle, was pro-
vided by Donoho and Stark that a function and its Fourier transform
cannot be largely concentrated on any set of small measure [2]. The
authors in [2] defined two criteria for measuring concentrations as
the absolute value of the signal (L1-norm) and as the signal energy
(L2-norm). The uncertainty principle has many important applica-
tions in time-frequency analysis. The classical uncertainty princi-
ple provided the motivation for the famous Slepian’s time-frequency
concentration problem of optimally concentrating a signal in both
spatial and spectral domains [3]. The concentration uncertainty prin-
ciples have also been extensively applied in the problems of signal
reconstruction and recovery [2], signal extrapolation [4] and com-
pressive sampling [5].

Extending the uncertainty principle for signals defined on the
unit sphere is an important problem in unit sphere signal process-
ing. Signals defined on the unit sphere involve spherical harmonics
as basis functions and have many applications in various branches of
physical sciences and engineering [6, 7]. The fundamental problem
under consideration here is to derive the concentration uncertainty
principle that relates the simultaneous concentration of a signal in
the spatial and spectral domains. The classical uncertainty principle
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is formulated for signals on the sphere in [8,9] and has been applied
in geodesy and geophysics to study the localization properties of
wavelets and signals on the sphere [9–11]. The Slepian’s concentra-
tion problem on the sphere has been investigated in [7,10,12] and the
resulting eigenfunctions are analyzed using the classical uncertainty
principle on the sphere that relates the variances of the signal in spa-
tial and spectral domains. To the best of the authors’ knowledge, the
concentration uncertainty principles for signals on the sphere have
not been formulated in the literature. Conceptually, the closed ge-
ometry of the sphere makes this task a non-trivial extension from the
time-frequency case. For example, the sphere has a finite support in
the spatial domain and is periodic in both co-latitude and longitude,
which causes the spectral representation using spherical harmonic
basis functions to be discrete. In addition, the intervals in the time
domain correspond to the regions on the sphere which can vary in
shape and may not necessarily be connected.

In this work, we derive two concentration uncertainty principles
for signals on the sphere as an analog of the Donoho and Stark un-
certainty principles in the time-frequency analysis. We formulate the
selection operators in both spatial and spectral domains, which trun-
cate a signal in the desired spatial or spectral region. We present the
L1-norm concentration uncertainty principle such that the absolute
value of the signal is considered as concentration measure. Using the
Hilbert-Schmidt norm of the selection operators, we also derive the
L2-norm concentration uncertainty principle where the concentra-
tion is measured as signal energy in the desired spatial and spectral
regions. Finally, we analyze the sharpness of the proposed L2-norm
uncertainty principle bound by comparing it with the eigenvalue as-
sociated with the most concentrated bandlimited eigenfunction ob-
tained from the Slepian’s concentration problem on the sphere [10].

The rest of the paper is organized as follows. The mathematical
background for the signals on the sphere is provided in Section 2.
The formulation of the selection operators and the derivation and
analysis of the uncertainty principles is presented in Section 3. Fi-

nally, Section 4 concludes the paper. Notations and terms: (·) de-
notes the complex conjugate operation. sup{·} denotes supremum
of a set, |( · )| denotes the magnitude and ‖( · )‖p denotes the Lp

norm of the signal or operator which is define later in Section 2.

2. MATHEMATICAL BACKGROUND

2.1. Signals on the Unit Sphere

We consider a function f(θ, φ) defined on the unit sphere S2 � {r ∈
R

3 : ‖r‖ = 1}, i.e., if r ∈ S
2 then r is a unit vector, θ ∈ [0, π]

denotes the co-latitude measured with respect to the positive z−axis
(θ = 0 corresponds to the north pole), and φ ∈ [0, 2π) denotes the
longitude and is measured with respect to the positive x−axis in the
x − y plane. The inner product of two functions f, g ∈ L2(S2) is
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defined as

〈f, g〉 �
∫
S2

f(Ω)g(Ω) dΩ (1)

where Ω ≡ {θ, φ} parameterizes a point on the unit sphere and
dΩ = sin θ dθ dφ. The finite energy functions on the sphere such
that ‖f‖ � 〈f, f〉1/2 < ∞ are referred to as “signals on the unit
sphere”. All such finite energy signals under inner product (1) form
a complex Hilbert space L2(S2). In the following any reference to
a signal is understood to be the same as “signal on the unit sphere”,
unless otherwise stated.

For a signal f(Ω), its Lp-norm is defined as [13]

‖f‖p =
( ∫

S2

|f(Ω)|p dΩ)1/p (2)

2.2. Spherical Harmonics

The spherical harmonics, Y m
� (θ, φ), for degree � ≥ 0 and order

|m| ≤ � are defined as [14]

Y m
� (θ, φ) =

√
2�+ 1

4π

(�−m)!

(�+m)!
Pm
� (cos θ)eimφ

(3)

where Pm
� are the associated Legendre polynomials defined for m ≥

0 as

Pm
� (x) =

(−1)m
2��!

√
(1− x2)m

d�+m

dx�+m
(x2 − 1)� (4)

P−m
� (x) = (−1)m (�−m)!

(�+m)!
Pm
� (x) (5)

for |x| ≤ 1. With the above definitions, spherical harmonic func-
tions form an orthonormal set of basis signals for L2(S2), i.e., they

satisfy 〈Y m
� , Y m′

�′ 〉 = δ��′δmm′ , where δab denotes the Kronecker
delta and is equal to 1 for a = b and zero otherwise. By complete-
ness [15], any signal f ∈ L2(S2) can be expanded as

f(θ, φ) =

∞∑
�=0

�∑
m=−�

fm
� Y m

� (θ, φ) (6)

where equality is understood in terms of convergence in the mean,
and

fm
� � 〈f, Y m

� 〉 =
∫
S2

f(θ, φ)Y m
� (θ, φ) dΩ (7)

are the spherical harmonic coefficients. In this work, we refer to the
spherical harmonics domain, which consists of spherical harmonics
coefficients of signal, as the spectral domain of a signal.

The Dirac delta function δ(Ω,Ω′) on the sphere has following
expansion in spherical harmonics domain [7]

δ(Ω,Ω′) =
∞∑
�=0

�∑
m=−�

Y m
� (Ω)Y m

� (Ω′) (8)

and obeys the following property

f(Ω) =

∫
S2

δ(Ω,Ω′)f(Ω′)dΩ′ (9)

We will also use the spherical harmonics addition theorem [15]

�∑
m=−�

Y m
� (Ω)Y m

� (Ω′) =
2�+ 1

4π
P 0
� (cosΔ) (10)

with Ω = {θ, φ}, Ω′ = {θ′, φ′} and cosΔ = cos θ cos θ′ +
sin θ sin θ′ cos(φ− φ′).

2.3. Operator Definition using Fredholm Integral Equation

Define an operator K for signals on the sphere using general Fred-
holm integral equation [16]

(K f)(Ω) =

∫
S2

K(Ω,Ω′) f(Ω′)dΩ′ (11)

where K(Ω,Ω′) is the kernel for an operator K . Since it is impor-
tant in the sequel, we define the Lp-norm of an operator K as

‖K ‖p = sup
f∈S2

‖K f‖p
‖f‖p (12)

Also, the Hilbert-Schmidt norm of an operator K with kernel
K(Ω,Ω′) is given by [2]

‖K ‖H =

(∫
S2

∫
S2

|K(Ω,Ω′)|2dΩ dΩ′
)1/2

(13)

which is a bound on ‖K ‖2.

3. CONCENTRATION UNCERTAINTY PRINCIPLE

In this section, we formulate the concentration uncertainty principles
for signals on the sphere such that the concentration is measured us-
ing the L1-norm and L2-norm of a signal respectively. More pre-
cisely, if the signal f(Ω) on the sphere is concentrated on some spa-
tial region R ⊂ S

2 and also concentrated on some spectral region
N = [N1, N2] which denotes the spherical harmonic coefficients
fm
� with N1 ≤ � ≤ N2 and−� ≤ m ≤ �, we develop the principles

which relate the concentration measures and concentration regions
in both spatial and spectral domains. Note that the region R does not
need to be connected, whereas for the sake of simplicity, we consider
the connected region N in spherical harmonics domain but this can
also be generalized for non-connected regions. We first define the
selection operators in both spatial and spectral domains which select
the part of a signal in a selected spatial or spectral region [17]. Then
we state and prove the uncertainty principles.

3.1. Selection Operators on the Sphere

Definition 1 (Spatial Selection Operator). Define the spatial selec-
tion operator KR which selects the function in a region R with ker-
nel KR(Ω,Ω

′) as

KR(Ω,Ω
′) � IR(Ω)δ(Ω,Ω

′) (14)

where IR(Ω) = 1 for Ω ∈ R ⊂ S
2 and IR(Ω) = 0 for Ω ∈ S

2/R
is an indicator function of the region R.

Definition 2 (Spectral Selection Operator). Define the spectral se-
lection operator KN with N = [N1, N2], which selects the contri-
bution of spherical harmonics in spectral region N in a signal and
has the kernel KN as

KN (Ω,Ω′) �
N2∑

�=N1

�∑
m=−�

Y m
� (Ω)Y m

� (Ω′) (15)

We note that both the spatial and spectral selection operators are
idempotent and self-adjoint in nature. That is they are projection
operators.
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3.2. The L1-norm Uncertainty Principle

We first present the L1-norm uncertainty principle which relates the
concentration of signal in spatial and spectral domains to the mea-
sure of spatial and spectral regions, where the concentration is de-
termined using the L1-norm of a signal. We say that f is εR con-
centrated in the spatial domain and εN concentrated in the spectral
domain if ‖f −KRf‖1 ≤ εR and ‖f −KNf‖1 ≤ εN respectively.

Theorem 1 (L1-norm Uncertainty Principle). If the unit L1-norm
signal f is εR concentrated in the region R ⊂ S

2 and εN concen-
trated in the spectral region N = [N1, N2], then

A

4π

(
(N2 + 1)2 −N2

1

)
≥ 1− εR − εN

1 + εN
(16)

where A =
∫
S2

IR(Ω)dΩ denotes the area of the region R.

Proof. Since, the signal f is unit-norm, we have

‖f‖1 =

∫
S2

|f(Ω)|dΩ = 1 (17)

and using the given ‖f − KRf‖1 ≤ εR and ‖f − KNf‖1 ≤ εN
and the fact that ‖f −KRf‖1 ≥ ‖f‖1 − ‖KRf‖1, we obtain

‖KRf‖1 + εR ≥ 1 , ‖KNf‖+ εN ≥ 1 (18)

Define a composite operator KRN = KRKN . From (17) and (18),
we obtain the L1-norm of this composite operator as

‖KRN‖1 ≥ ‖KRNf‖1 ≥ 1− εR − εN (19)

Since, the operator KN is idempotent, using the spherical harmonic
expansion of f , we can write

(KNf)(Ω) =

N2∑
�=N1

�∑
m=−�

∫
S2

Y m
� (Ω)Y m

� (Ω′)(KNf)(Ω′) dΩ′

(20)

Using the spherical harmonics addition theorem in (10), we can ob-
tain from (20) that

|(KNf)(Ω)| =
N2∑

�=N1

2�+ 1

4π

∫
S2

|P 0
� (Δ)| (21)

and we have sup ‖P 0
� (Δ)‖1 = 1 and ‖(KNf)‖∞ = max |(KNf)(Ω)|

for Ω ∈ S
2, which implies

‖(KNf)‖∞ ≤ 1

4π

(
(N2 + 1)2 −N2

1

)
‖(KNf)‖1 (22)

For the composite operator KRN , we have

‖KRNf‖1 =

∫
R

|(KNf)(Ω)|dΩ ≤ ‖KNf‖∞A (23)

where A is the area of the region R. Using (23) and (22), we obtain

‖KRNf‖1 ≤ A

4π

(
(N2 + 1)2 −N2

1

)
‖(KNf)‖1 (24)

Combining (17), (18) and (19) with (24) gives the stated result.

Remark 1. The factor A
4π

(
(N2 + 1)2 −N2

1

)
on the left hand side

of (16) can be defined as a generalized space-bandwidth product,
with the term A/4π being a measure of spatial region R and the
term (N2 + 1)2 − N2

1 being a measure of spectral region N =
[N1, N2]. For N1 = 0, this space-bandwidth product is referred to
as an equivalent of the Shannon number in [7,10] for signals defined
on the sphere.

3.3. The L2-norm Uncertainty Principle

Next, we present the uncertainty principle such that the concentra-
tion is measured using L2-norm, which is a measure of energy of the
signal and makes this principle more appealing and practical.

Theorem 2 (L2-norm Uncertainty Principle). If the unit L2-norm
signal f is εR concentrated in the region R ⊂ S

2 such that ‖f −
KRf‖2 ≤ εR and εN concentrated in the spectral region N =
[N1, N2] such that ‖f −KNf‖2 ≤ εN , then

A

4π

(
(N2 + 1)2 −N2

1

)
≥ (1− εR − εN )2 (25)

where A =
∫
S2

IR(Ω)dΩ denotes the area of the region R.

Proof. By definition, ‖f‖2 = 1, ‖f − KRf‖2 ≤ εR and ‖f −
KNf‖2 ≤ εN , which implies

‖KRf‖2 ≥ 1− εR , ‖KNf‖2 ≥ 1− εN (26)

Define a composite operator KNR = KNKR composed of spatial
selection operation R followed by spectral selection KN . By sub-
stituting (14) and (15) in (11) and using the representation of Dirac
delta in (8), we obtain the kernel KNR(Ω,Ω

′) as

KNR(Ω,Ω
′) =

∫
S2

SN (Ω,Ω′′)SR(Ω
′′,Ω) dΩ

=

N2∑
�=N1

�∑
m=−�

Y m
� (Ω)Y m

� (Ω′)IR(Ω
′) (27)

The Hilbert Schmidt norm of the composite operator KNR can be
obtained using (13) along with the spherical harmonics addition the-
orem in (10) and the fact that P 0

� (1) = 1 as

‖KNR‖H =

(
N2∑

�=N1

2�+ 1

4π

∫
R

dΩ

)1/2

=

(
A

4π

(
(N2 + 1)2 −N2

1

))1/2

(28)

Now, the effect of the composite operator on the concentration can
be readily obtained from (26) as

‖KNR f‖2 ≥ 1− εR − εN (29)

Using definition of the norm of operator in (12), ‖KNR‖2 ≥
‖KNR f‖2 and the fact that ‖KNR‖H ≥ ‖KNR‖2 and combined
with (28) and (29) gives the result in (25).

Remark 2. We can infer from the proof of Theorem 2 that the com-
posite operator KRN = KRKN is an adjoint of the operator KNR

which implies that the Hilbert-Schmidt norm of these two composite
operators is equal and given by (28).

3.4. Sharpness of the Uncertainty Principle Bound

We provide an analysis of the bound imposed by the L2-norm un-
certainty principle on the simultaneous spatial and spectral signal
concentration, which is a measure of signal energy. We compare this
bound with the largest eigenvalue obtained from the Slepian concen-
tration problem for azimuthally symmetric signals on the sphere pro-
posed in [7,10,12]. First, we consider the spatial polar cap regions R

characterized by central angle Θ with area A =
∫ π

o

∫ Θ

0
sin θdθdφ =
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Fig. 1. Comparison of the uncertainty bound λ0 = (N2 + 1)2(1 −
cosΘ)/2 obtained from (25) and the largest eigenvalue λc associ-
ated with the most concentrated bandlimited eigenfunction obtained
from Slepian’s concentration problem on the sphere [10]. Results
are shown as a function of the area A of spatial polar cap regions
with the consideration of different spectral regions N = [0, N2] for
N2 = 10 and N2 = 20.

2π(1 − cosΘ) and the spectral regions N = [0, N2]. We use
λc(Θ, N2) to denote the largest eigenvalue obtained numerically by
solving the concentration problem on the sphere [10,12], which finds
the bandlimited signal of maximum spectral degree N2 with maxi-
mum energy concentration in the polar cap region of angle Θ. We
obtain the simplified form of the product on the left hand side in (25)
for spatial and spectral regions under consideration as λ0(Θ, N2) =
(N2 + 1)2(1 − cosΘ)/2, which serves as an uncertainty bound.
Fig 1 shows the comparison of λc(Θ, N2) and λ0(Θ, N2) against
Θ for N2 = 10 and N2 = 20, which indicates that λ0 serves as a
sharp bound for the spatial polar cap region R and it gets tighter for
smaller values of λ0.

In the preceding analysis, we considered the connected polar
cap region of central angle Θ. Next, we consider a region of two
non-connected polar caps centered at opposite poles (θ = 0 and
θ = π) with the central angle of each polar cap being cos−1(1 +
cosΘ)/2. It can be easily shown that the region of two polar caps
have the same area A = 2π(1 − cosΘ), thus it does not effect the
uncertainty bound and it still holds but the tightness of the bound is
comparatively reduced as illustrated by the ‘non-connected region’
curve in Fig 1. Summarizing our analysis, the bound or the limit
imposed by concentration uncertainty principle is more sharper and
tighter for connected regions and smaller values of space-bandwidth
product respectively.

4. CONCLUSIONS AND FUTURE WORK

In this work, we have investigated the concentration uncertainty
principles for the signals on the sphere that relate the localization of
concentration of a signal in spatial and spectral domains. Consid-
ering the concentration as absolute value of a signal, the L1-norm
uncertainty principle is derived. We also derived the more practical
L2-norm uncertainty principle using the Hilbert-Schmidt norm of
the composite selection operator on the sphere. We showed that
the uncertainty principle bound is relatively sharper and tighter for
the connected regions as compared to non-connected regions. The

proposed uncertainty principles in this paper can be used to revisit
the signal extrapolation problem on the sphere in the presence of
noise [17]. They can also be applied to investigate compressive
sampling on the sphere.

5. REFERENCES

[1] L. Cohen, “The uncertainty principle in signal analysis,”
in Proceedings of the International Symposium on Time-
Frequency and Time-Scale Analysis, Oct. 1994, pp. 182–185.

[2] D. Donoho and P. Stark, “Uncertainty principles and signal re-
covery,” SIAM J. Appl. Math., vol. 49, pp. 906–931, June 1989.

[3] D. Slepian and H. O. Pollak, “Prolate spheroidal wave func-
tions, Fourier analysis and uncertainity-I,” Bell Systems Tech-
nical Journal, vol. 40, pp. 43–63, Jan. 1961.

[4] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty prin-
ciples: exact signal reconstruction from highly incomplete fre-
quency information,” IEEE Transactions on Information The-
ory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[5] V. Goyal, A. Fletcher, and S. Rangan, “Compressive sampling
and lossy compression,” IEEE Signal Processing Magazine,
vol. 25, no. 2, pp. 48–56, March 2008.

[6] B. T. T. Yeo, W. Ou, and P. Golland, “On the construction of
invertible filter banks on the 2-sphere,” IEEE Trans. Image Pro-
cess., vol. 17, no. 3, pp. 283–300, Mar. 2008.

[7] F. J. Simons, F. A. Dahlen, and M. A. Wieczorek, “Spatiospec-
tral concentration on a sphere,” SIAM Review, vol. 48, no. 3,
pp. 504–536, 2006.

[8] R. S. Strichartz, “Uncertainty principles in harmonic analysis,”
Journal of Functional Analysis, vol. 84, no. 1, pp. 97–114,
1989.

[9] F. Narcowich and J. Ward, “Non-stationary wavelets on the m-
sphere for scattered data,” Applied and Computational Har-
monic Analysis, vol. 3, no. 4, pp. 324–336, Oct. 1996.

[10] M. Wieczorek and F. Simons, “Localized spectral analysis on
the sphere,” Geophys. J. Int., pp. 655–675, May 2005.

[11] W. Freeden and V. Michel, “Constructive approximation and
numerical methods in geodetic research today. An attempt at
a categorization based on an uncertainty principle.” Journal of
Geodesy, vol. 73, pp. 452–465, 1999.

[12] A. Albertella, F. Sanso, and N. Sneeuw, “Band-limited func-
tions on a bounded spherical domain: the slepian problem on
the sphere,” Journal of Geodesy, vol. 73, pp. 436–447, Jun.
1999.

[13] M. Schechter, Principles of functional analysis, 2nd ed.
American Mathematical Society, 2002.

[14] J. J. Sakurai, Modern Quantum Mechanics, 2nd, Ed. Reading,
MA: Addison Wesley, 1994.

[15] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic
Scattering Theory, 2nd ed. Springer-Verlag, 1998.

[16] R. A. Kennedy, T. A. Lamahewa, and L. Wei, “On azimuthally
symmetric 2-sphere convolution,” The 6th U.S./Australia
Joint Workshop on Defense Applicatins of Signal Process-
ing (DASP), 2009.

[17] R. Kennedy, W. Zhang, and T. Abhayapala, “Spherical har-
monic analysis and model-limited extrapolation on the sphere:
Integral equation formulation,” in Proc. 2nd International Con-
ference on Signal Processing and Communication Systems,
Dec. 2008, pp. 1–6.

3720


